www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration von 1/x
Integration von 1/x < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von 1/x: benötige schnelle Hilfe
Status: (Frage) beantwortet Status 
Datum: 10:23 Do 08.11.2007
Autor: Autumn86

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{x}dx} [/mm]

Hi,

verzweifel gerade an der Integration von 1/x bzw x^(-1)...
komm einfach nich weiter. Auch aus der hier geposteten Potenzregel bin ich nicht schlauer geworden, ab ner gewissen länge der Rechnung, verschwimmt sie vor meinen Augen zu Hieroglyphen...
Schreibe heut Abend Schulaufgabe, brauche also möglichst schnelle Hilfe.
Das reine Ergebnis wär mir schon genug als Antwort. Schön wäre, dazu, etwas allgemeines wie [mm] 1/x^n [/mm] ist integriert =...
Danke im vorraus!

mfg

Autumn

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration von 1/x: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Do 08.11.2007
Autor: AndiL

[mm] \integral \bruch{1}{x} [/mm] dx = [mm] ln\vmat{x} [/mm]

Die allg. Formel dazu müsste diese sein:
[mm] \integral \bruch{f'(x)}{f(x)} [/mm] dx = [mm] ln\vmat{f(x)} [/mm]
Hab ich aber - im gegensatz zur ersten Zeile - nie gebraucht.
Einfach erste Zeile merken, auswendig lernen, in der Formelsammlung nachschaun...

Und diese hier haben damit also nicht direkt etwas zu tun:
[mm] \integral -\bruch{1}{x^{2}} [/mm] dx = [mm] \bruch{1}{x} [/mm]
[mm] \integral -\bruch{2}{x^{3}} [/mm] dx = [mm] \bruch{1}{x^{2}} [/mm]

Bezug
        
Bezug
Integration von 1/x: Anmerkung
Status: (Antwort) fertig Status 
Datum: 11:01 Do 08.11.2007
Autor: Roadrunner

Hallo Autumn,

[willkommenmr] !!


Die Lösung für Dein Integral hat Dir Andi bereits genannt.

Die von Dir erwähnte MBPotenzregel für die Integrationmit [mm] $\integral{x^n \ dx} [/mm] \ = \ [mm] \bruch{1}{n+1}*x^{n+1} [/mm] + C$ gilt ausschließlich für den Fall [mm] $\red{n \ \not= \ -1}$ [/mm] .


Gruß vom
Roadrunner


Bezug
        
Bezug
Integration von 1/x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Do 08.11.2007
Autor: Autumn86

Danke euch beiden, die SA ist gerettet! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de