www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration von 1/(x^2-1)
Integration von 1/(x^2-1) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von 1/(x^2-1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 16.11.2005
Autor: trouff

Ähm meine Frage wäre, wie man das:

    x+8
___________

(x+3)(x-2)

integriert.

Ich dachte, dass man den Nenner so lassen könne und A dann mit (x-2) und B mit (x+3) erweitert. Dann dachte ich löst man das normal auf. Also:

(A+B)x-2A+3B also A+B=1 und 2A+3B = 8

A=-1/1/2B +4

B=-A+1    A=1/1/2*(-A+1)+4   A=-1/1/2A+5/1/2   2/1/2A= 5/1/2  
A=2/1/5
B=-1/1/5

also was hab ich falsch gemcht??

danke im voraus

MFG
trouff

        
Bezug
Integration von 1/(x^2-1): Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mi 16.11.2005
Autor: Zwerglein

Hi, trouff,

Gauner! Die Überschrift stimmt ja gar nicht mit der Fragestellung überein!

Macht aber nix! System ist dasselbe: Partialbruchzerlegung!

Ansatz:
[mm] \bruch{x+8}{(x+3)(x-2)} [/mm] = [mm] \bruch{a}{x+3} [/mm] + [mm] \bruch{b}{x-2} [/mm]

Lösung:
Nach Multiplikation mit (x+3)(x-2) ergibt sich:
x+8 = a(x-2) + b(x+3)

Nun setze x=-3 und Du erhältst:
5 = -5a; also: a=-1.

Dann setze x=2 und Du kriegst:
10 = 5b; also b=2.

Das zu intergrieren schaffst Du nun alleine!

mfG!
Zwerglein

Bezug
                
Bezug
Integration von 1/(x^2-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Mi 16.11.2005
Autor: trouff

Hoffe ich habe jetzt die richtige Option ausgewählt

Habe zwar nicht genau verstanden, wie du es gemacht hast zwerglein, aber ich habe selber nochmal nachgerechnet und muss mich wohl irgendwie irgendwo vertan haben.

Trotzdem danke

Apropo, warum war den das Thema falsch. Hier ging es doch um Partialbruchzerlegung!!

mfg

trouff

Bezug
                        
Bezug
Integration von 1/(x^2-1): Schon, aber...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Do 17.11.2005
Autor: Zwerglein

Hi, trouff,

... die Funktion in der Überschrift [mm] (1/(x^2-1) [/mm] ist halt doch einfacher als die, um dies' letztlich geht!
Aber schon klar: Wolltest nur ein Beispiel geben!

> Habe zwar nicht genau verstanden, wie du es gemacht hast
> zwerglein, aber ich habe selber nochmal nachgerechnet und
> muss mich wohl irgendwie irgendwo vertan haben.

Also die Sache ist doch die: EINfache Nullstellen des Nenners (z.B. x=1)
gehen in die Zerlegung als Bruchterm [mm] \bruch{a}{x-1} [/mm] ein.

Daher wird aus [mm] \bruch{1}{(x+1)(x-1)} [/mm]
die Zerlegung:
[mm] \bruch{1}{(x+1)(x-1)} [/mm] = [mm] \bruch{a}{x+1} [/mm] +  [mm] \bruch{b}{x-1} [/mm]
Soweit ist die Sache wohl klar?!

Multiplikation mit dem Hauptnenner (und natürlich Kürzen!) ergibt die Gleichung:

1 = a*(x-1) + b(x+1)   (***)

Da diese Gleichung FÜR ALLE x gelten muss, ist das Einsetzen von Zahlen für x BELIEBIG. Man kann also: x=0, x=25, [mm] x=-\pi [/mm] oder sonst was einsetzen, um a und b zu berechnen.
Der schlaue Mensch setzt natürlich solche Zahlen ein, für die eine der beiden Klammern =0 wird, weil man dann a bzw. b aus einer einzigen Zeile berechnen kann!
Beispiel:  
Setze x=1 und die Klammer (x-1) bei a wird zu 0.
Daher: 1 = b(1+1) <=> 2b=1  <=>  b=0,5

Und setze x=-1; dann wird die zweite Klammer =0.
Daher: 1 = a(-1-1)  <=> a = -0,5.

Jetzt alles geklärt?

mfG!
Zwerglein



Bezug
                
Bezug
Integration von 1/(x^2-1): Meine Schuld ;-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 17.11.2005
Autor: Loddar

Hallo Zwerglein!


> Gauner! Die Überschrift stimmt ja gar nicht mit der
> Fragestellung überein!

Das ist meine "Schuld" ...

Diese Frage hing an einer alten Frage mit dieser Überschrift dran. Und durch das Verschieben und "Beförderung" zur eigenständigen Frage wurde die alte Überschrift mit übernommen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de