Integration von cos und sin^3 < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] \integral{\bruch{x cos(x)}{sin^3(x)} dx} [/mm] |
Hallo,
ich möchte das Integral berechnen [mm] \integral{\bruch{x cos(x)}{sin^3(x)} dx} [/mm] und weiss aber nicht wie ich anfangen soll.
Mit Substitution ist hier nicht viel zu machen, es würde zwar wenn ich sin(x) substituiere das cos(x) wegfallen, aber das x im Zähler würde dann ja zum arcsin (oder?), und wenn ich Partiell Integrieren will, sollte ich glaub ich vorher vereinfachen. Aber das ist mein Problem, ich hab angefangen das [mm] sin^3 [/mm] mit [mm] \bruch{1}{4} [/mm] (3sinx-sin3x) zu vereinfachen und wollte dann Partialbruchzerlegung machen, aber das haut nicht hin. Und der TI kann dieses Integral auch nicht ausrechnen.
Kann mir wer auf die Sprüng helfen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:56 So 10.10.2010 | Autor: | leduart |
Hallo
partielle Integration, [mm] u'=cosx/sin^3(x) [/mm] dazu Ableitung von [mm] 1/sin^2(x) [/mm] ansehen.
Wolfran hätte dich sicher auch auf die Idee gebracht.
Gruss leduart
|
|
|
|
|
Danke für den Link zu Wolfram und Danke für den Hinweis auf die partielle Integration. Ich habs mal händisch versucht und bin auf ein anderes ergebnis gekommen:
- [mm] \bruch{x}{2sin(x)^2}-\bruch{cot(x)}{2} [/mm]
da [mm] \bruch{1}{sin(x)} [/mm] = csc(x) ist wird wahrscheinlich [mm] \bruch{x}{2sin(x)^2} [/mm] = [mm] \bruch{xcsc^2(x)}{2} [/mm] sein, oder? Mit Winkelbeziehungen hab ichs nicht so, aber das wär zumindest teilweise übereinstimmend mit der Lösung bei wolfram.
Dafür hab ich jetzt aber nicht die ableitung von [mm] \bruch{1}{sin(x)^2} [/mm] gebraucht...
Stimmt da irgendwas was ich gemacht hab?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:29 Mo 11.10.2010 | Autor: | leduart |
Hallo
wenn du für cot cos/sin einsetzt ist das doch das Wolfram Ergebnis.
für die part. integration brauch ich dass [mm] u=1/sin^2(x) [/mm] ist
Gruss leduart
|
|
|
|
|
Also ich hab gleich das Integral von $ [mm] \integral{\bruch{cos(x)}{sin^3(x)} dx} [/mm] $ aus der Integraltabelle mit $ [mm] \bruch{x}{2sin(x)^2} [/mm] $ entnommen und dann mit x partiell integriert.
Ist etwa $ [mm] csc^2(x)*cot(x) [/mm] = cos(x)sin(x) $ ?
Wenn man das ohne Tabelle machen würde und man würde $ [mm] u=1/sin^2(x) [/mm] $ setzen ist das abgeleitet [mm] \bruch{-2cos(x)}{sin(x)^3} [/mm] also würde sich der cos(x) und ein sin(x) kürzen dann würde stehen bleiben:
[mm] \integral {-\bruch{xsin(x)^2}{2u} du} [/mm] da würde mir aber was ganz anderes rauskommen. Oder wie hast du das mit $ [mm] u=1/sin^2(x) [/mm] $ gemeint?
|
|
|
|
|
Hallo,
ausgehend von [mm] \sin [/mm] und [mm] \cos [/mm] sind die restlichen trigonometrischen wie folgt definiert (unmathematische Merkschreibweise):
[mm] \tan=\bruch{\sin}{\cos}
[/mm]
[mm] \cot=\bruch{\cos}{\sin}=\bruch{1}{\tan}
[/mm]
[mm] \sec=\bruch{1}{\cos}
[/mm]
[mm] \csc=\bruch{1}{\sin}
[/mm]
Vor allem in angelsächsischen Ländern sind diese alle in Gebrauch, bei uns beschränkt man sich üblicherweise auf [mm] \sin,\ \cos,\ [/mm] und [mm] \tan.
[/mm]
Hilft Dir das weiter, Wolfram nachzuvollziehen?
Grüße
reverend
|
|
|
|
|
dann würde das ja [mm] \bruch{cos(x)}{sin^3(x)} [/mm] ergeben, aber nicht das was bei wolfram rauskommt. Ich steh da ziemlich auf der leitung. Wie geht denn das?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:42 Mo 11.10.2010 | Autor: | leduart |
Hallo
ich hab noch nie integraltabellen benutzt. aber wenn ich weiss das [mm] (1/sin^2(x))'=2*cos(x)/sin^3(x) [/mm] ist ist es naheliegend beim vorliegenden Integral [mm] u'=cos(x)/sin^3(x) [/mm] und damit [mm] u=1/2sin^2(x) [/mm] zu setzen. v=x, v'=1
und dann partielle Integration. Das hast du ja auch gemacht.
dann hast du [mm] x/2sin^2(x)+cos(x)/sin(x)=1/2sin^2(x)*(x+2cosx*sinx)
[/mm]
das Ergebnis von Wolfram, der das in USA verbreitertere csc statt 1/sin benutzt.
Gruss leduart
|
|
|
|