www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration von cos(x)/sin(x)
Integration von cos(x)/sin(x) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von cos(x)/sin(x): Idee
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 05.05.2009
Autor: Liverpool87

Aufgabe
Integrieren Sie:

[mm] \bruch{sin^{3}(x)}{cos^{4}(x)} [/mm]

Hallo,

kann man dieses nicht hier irgendwie vereinfachen bzw. sin(x)/cos(x) ist doch tan(x)

Wie kann ich das in diesem Fall umschreiben bzw. löst man so diese Aufgabe

Andere Möglichkeit wäre doch Substitution oder

Danke

        
Bezug
Integration von cos(x)/sin(x): Tipp
Status: (Antwort) fertig Status 
Datum: 20:10 Di 05.05.2009
Autor: Loddar

Hallo Liverpool!


Setze im Zähler ein:
[mm] $$\sin^2(x) [/mm] \ = \ [mm] 1-\cos^2(x)$$ [/mm]
Anschließend den Bruch zerlegen und integrieren (z.B. mittels Substitution).


Gruß
Loddar


Bezug
                
Bezug
Integration von cos(x)/sin(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 05.05.2009
Autor: Liverpool87

Danke ging ja schnell

also hab ich da stehen

[mm] \sin(x) \* \bruch{(1-\cos^2(x) )}{cos^{4}(x)} [/mm]


??

  

Bezug
                        
Bezug
Integration von cos(x)/sin(x): Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 20:34 Di 05.05.2009
Autor: Lars64

Also mein Vorschlag wäre:

Ableitung von cos(x) ist -sin(X) => Ableitung von [mm] Cos(X)^4 [/mm] = -4 [mm] sin(x)^3 [/mm]

Und wenn im Zähler die Ableitung des Nenners steht, bietet sich der Ansatz über ln. D.h. mein Lösungsvorschlag wäre F(x) = a ln [mm] cos^4(x). [/mm]
Den Parameter a solltest du selber bestimmen. Hoffe Dir geholfen zu haben.

MfG

Bezug
                                
Bezug
Integration von cos(x)/sin(x): Kettenregel
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:36 Di 05.05.2009
Autor: Loddar

Hallo Lars!


> Ableitung von [mm]Cos(X)^4[/mm] = -4 [mm]sin(x)^3[/mm]

Das stimmt leider überhaupt nicht. Du musst hier doch mittels MBKettenregel ableiten.


Gruß
Loddar


Bezug
                                        
Bezug
Integration von cos(x)/sin(x): Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 20:44 Di 05.05.2009
Autor: Lars64

Loddar hat recht. Mein Fehler. Sorry. Hab mich da verrant.
Bezug
                                                
Bezug
Integration von cos(x)/sin(x): vorgerechnet
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:46 Di 05.05.2009
Autor: Loddar

Hallo Lars!


Nein, es gilt:
[mm] $$\left[ \ \cos^4(x) \ \right]' [/mm] \ = \ [mm] 4*\cos^3(x)*[-\sin(x)] [/mm] \ = \ [mm] -4*\sin(x)*\cos^3(x)$$ [/mm]

Gruß
Loddar


Bezug
                                                        
Bezug
Integration von cos(x)/sin(x): Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 20:56 Di 05.05.2009
Autor: Lars64

Sorry. Hab mich da verrant. Mein Fehler. Hab an Sin(x)/Cos(x) gedacht. Da gehts. Danke und schönen abend noch.

Bezug
                        
Bezug
Integration von cos(x)/sin(x): Bruch zerlegen
Status: (Antwort) fertig Status 
Datum: 20:41 Di 05.05.2009
Autor: Loddar

Hallo Liverpool!


Nun den Bruch zerlegen (wie bereits oben angedeutet):
[mm] $$\sin(x) [/mm] * [mm] \bruch{1-\cos^2(x) }{\cos^{4}(x)} [/mm] \ = \ [mm] \bruch{\sin(x)-\sin(x)*\cos^2(x) }{\cos^{4}(x)} [/mm] \ = \ [mm] \bruch{\sin(x)}{\cos^{4}(x)}-\bruch{\sin(x)*\cos^2(x) }{\cos^{4}(x)} [/mm] \ = \ [mm] \bruch{\sin(x)}{\cos^{4}(x)}-\bruch{\sin(x)}{\cos^{2}(x)}$$ [/mm]
Nun kannst Du beide Brüche separat über die Substitution $u \ := \ [mm] \cos(x)$ [/mm] integrieren.


Gruß
Loddar


Bezug
                                
Bezug
Integration von cos(x)/sin(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 05.05.2009
Autor: Liverpool87

ich probiers mal:

also hab ich dann für den ersten Bruch:

[mm] \integral_{}^{}{\bruch{sin(x)}{u^{4}} dx} [/mm] = [mm] \bruch{sin(x)}{u^{4}} \*-sin(x) [/mm]

und dann nur noch für u = cos(x) einsetzen ??

Ka das mit dem Sub. bekomm ich nicht wirklich hin





Bezug
                                        
Bezug
Integration von cos(x)/sin(x): Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 05.05.2009
Autor: fencheltee

du hast u(x)=cos(x) substituiert
dann leitest du dies ab:
[mm] \bruch{du}{dx}=-sin(x) [/mm]
[mm] \gdw [/mm] -du=sin(x)dx
und das dann alles eingesetzt ergibt
[mm] -\int\bruch{1}{u^4}du=-\int u^{-4}du [/mm]

Bezug
                                                
Bezug
Integration von cos(x)/sin(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 05.05.2009
Autor: Liverpool87

merci,

Also kommt für den ersten Bruch  [mm] \bruch{1}{cos^{3}(x)} [/mm] raus

Für den zweiten Bruch:
[mm] \integral_{}^{}{-\bruch{sin(x)}{cos^{2}(x)} dx} [/mm] = [mm] -\bruch{1}{2}\*\bruch{1}{cos^{2}(x)} [/mm]

??

Dann einfach beide Ergebnisse zusammenführen und Integralkonstande hintendran machen


Bezug
                                                        
Bezug
Integration von cos(x)/sin(x): Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Di 05.05.2009
Autor: fencheltee


> merci,
>
> Also kommt für den ersten Bruch  [mm]\bruch{1}{cos^{3}(x)}[/mm]
> raus

[mm] \int u^{-4}du =\bruch{-1}{3}u^{-3}=\bruch{-1}{3*u^3}=\bruch{-1}{3*cos^3(x)} [/mm]

>  
> Für den zweiten Bruch:
>  [mm]\integral_{}^{}{-\bruch{sin(x)}{cos^{2}(x)} dx}[/mm] =
> [mm]-\bruch{1}{2}\*\bruch{1}{cos^{2}(x)}[/mm]
>  
> ??
>  
> Dann einfach beide Ergebnisse zusammenführen und
> Integralkonstande hintendran machen

[mm] \integral_{}^{}{-\bruch{sin(x)}{cos^{2}(x)} dx} [/mm]
wird mit u=cos(x) [mm] \gdw [/mm] du=-sin(x)dx zu
[mm] \int\bruch{1}{u^2}du=\int u^{-2} [/mm] ...

Bezug
        
Bezug
Integration von cos(x)/sin(x): Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Di 05.05.2009
Autor: Martinius

Hallo,

mit partieller Integration geht's auch.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de