www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration von sinh und cos
Integration von sinh und cos < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von sinh und cos: Idee
Status: (Frage) beantwortet Status 
Datum: 12:19 Di 18.09.2012
Autor: sardelka

Hallo,

ich habe folgendes Integral:

[mm] \integral_{-1}^{1}{(-2+sinh^{7}(x)cos(x^{8}) dx} [/mm]

Das soll ohne großer Rechnungen funktionieren, allerdings komme ich nicht auf die Lösung.

Kann mir jemand helfen, bitte?

Vielen Dank im Voraus
LG

        
Bezug
Integration von sinh und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Di 18.09.2012
Autor: reverend

Hallo sardelka,

das sieht nach einem hübsch aufgeblähten Monster aus.

> [mm]\integral_{-1}^{1}{(-2+sinh^{7}(x)cos(x^{8}) dx}[/mm]
>  
> Das soll ohne große Rechnungen funktionieren, allerdings
> komme ich nicht auf die Lösung.

Erstmal ist [mm] \int_{-1}^{1}{-2\ dx}=-4. [/mm]

Für den Rest würde ich mir mal anschauen, ob es sich um eine gerade oder eine ungerade Funktion handelt. Das könnte die Integration ja erheblich vereinfachen. ;-)

Grüße
reverend

Bezug
                
Bezug
Integration von sinh und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Di 18.09.2012
Autor: sardelka

sinh(x) ist eine ungerade Funktion und cos(x) ist eine gerade Funktion.

Aber irgendwie komme ich das einfach nicht weiter. Wie hilft mir das denn bei einer Integration weiter?

Bezug
                        
Bezug
Integration von sinh und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Di 18.09.2012
Autor: reverend

Hallo nochmal,

> sinh(x) ist eine ungerade Funktion und cos(x) ist eine
> gerade Funktion.

Richtig.

> Aber irgendwie komme ich das einfach nicht weiter. Wie
> hilft mir das denn bei einer Integration weiter?

Na, es geht schon noch etwas weiter.
Auch [mm] \sinh^7{(x)} [/mm] ist dann ungerade, und vor allem ist
[mm] \sinh^7{(x)}*\cos{(x^8)} [/mm] auch ungerade.

Für ungerade Funktionen [mm] f_u(x) [/mm] gilt aber:

[mm] \integral_{-a}^{0}{f_u(x)\ dx}=-\integral_{0}^{a}{f_u(x)\ dx} [/mm]

Damit ist die Aufgabe dann doch leicht zu lösen.

Grüße
reverend

Bezug
                                
Bezug
Integration von sinh und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Di 18.09.2012
Autor: sardelka

Tut mir Leid, aber für mich ist es kein bisschen leichter geworden.
Ich sehe da immer noch nicht, wie ich den Wert ohne Rechnerei ablesen kann.

Ich habe also nun [mm] -\integral_{1}^{-1}{(-2 + sinh^{7}(x)cos(x^{8}) dx} [/mm]

Aber was bringt mir das?

Bezug
                                        
Bezug
Integration von sinh und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Di 18.09.2012
Autor: reverend

Hallo sardelka,

da hast Du ein Brett vor dem Kopf.
Lies meine letzte Antwort hiervor nochmal gründlich.

Dann rechne für die beliebige ungerade Funktion [mm] f_u(x) [/mm] doch
mal das [mm] $\integral_{-a}^{a}{f_u(x)\ dx}$ [/mm] aus.

Grüße
reverend

Bezug
                                                
Bezug
Integration von sinh und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Di 18.09.2012
Autor: sardelka

Ach soooooooo, eine Null kommt dann raus))) Aber ich bitte um eine Bestätigung. Nicht, dass das Brett immer noch vor dem Kopf steht)))

Bezug
                                                        
Bezug
Integration von sinh und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 18.09.2012
Autor: franzzink


> Ach soooooooo, eine Null kommt dann raus))) Aber ich bitte
> um eine Bestätigung. Nicht, dass das Brett immer noch vor
> dem Kopf steht)))

Hallo Sardelka,


ja, das Integral einer ungeraden Funktion von -a bis a ergibt immer null.

Das Gesamtintegral hat wegen dem Summanden "-2" den Wert -4.


Schöne Grüße
franzzink

Bezug
                                                                
Bezug
Integration von sinh und cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Di 18.09.2012
Autor: sardelka

Aber ich leite doch -2 auf, und dann habe ich -2x stehen, was dazu führt, dass auch die "-2 verschwindet".

Habe nämlich ein solches Beispiel genommen:

[mm] \integral_{-1}^{1}{-2 + cosh(x) dx} [/mm] = (-2x + sinh(x)) (von -1 bis 1)

Das ergibt doch wieder Null?


Bezug
                                                                        
Bezug
Integration von sinh und cos: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Di 18.09.2012
Autor: schachuzipus

Hallo sardelka,

> Aber ich leite doch -2 auf,


Aaaaahhhhhhhhhhhh!!!! Bitte !!!!

Das heißt "integrieren"

> und dann habe ich -2x stehen, [ok]
> was dazu führt, dass auch die "-2 verschwindet".

????

Es ist [mm] $\int\limits_{-1}^{1}{(-2+\sinh^7(x)\cdot{}\cos\left(x^8\right)) \ dx} [/mm] \ = \ [mm] \int\limits_{-1}^{1}{-2 \ dx} [/mm] \ + \ [mm] \underbrace{\int\limits_{-1}^{1}{\sinh^7(x)\cdot{}\cos\left(x^8\right) \ dx}}_{=0, \text{da Integrand ungerade}} [/mm] \ = [mm] \left[-2x\right]_{-1}^1 [/mm] \ + \ 0 \ = \ -2-2 \ = \ -4$

>
> Habe nämlich ein solches Beispiel genommen:
>  
> [mm]\integral_{-1}^{1}{-2 + cosh(x) dx}[/mm] = (-2x + sinh(x)) (von
> -1 bis 1) [ok]
>  
> Das ergibt doch wieder Null?

Nein, wieso sollte das Null ergeben?

Gruß

schachuzipus



Bezug
                                                                                
Bezug
Integration von sinh und cos: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Di 18.09.2012
Autor: sardelka

Ach so, jetzt habe ich glaube ich komplett verstanden.

Es ergibt nur bei ungeraden Funktionen Null, wenn man von -a bis a integriert.

Aber bei z.B. bei -2x nicht. (bin schon etwas durcheinander)

Vielen vielen Dank!!!

Bezug
                                                                                        
Bezug
Integration von sinh und cos: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Di 18.09.2012
Autor: fred97


> Ach so, jetzt habe ich glaube ich komplett verstanden.
>  
> Es ergibt nur bei ungeraden Funktionen Null, wenn man von
> -a bis a integriert.

Das stimmt nicht.

Z.B. ist

   [mm] \integral_{-1}^{1}{(x^2+x-\bruch{1}{3}) dx}=0. [/mm]

Die Funktion [mm] f(x)=x^2+x-\bruch{1}{3} [/mm] ist aber keine ungerade Funktion.

Also merke: ist f ungerade, so ist [mm] \integral_{-a}^{a}{f(x) dx}=0. [/mm]

Aber die Umkehrung ist i.a. falsch.

FRED
    

>  
> Aber bei z.B. bei -2x nicht. (bin schon etwas
> durcheinander)
>  
> Vielen vielen Dank!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de