www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Integrationsmethode
Integrationsmethode < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 03.04.2013
Autor: Mathe-Andi

Aufgabe
Es soll durch Integration gezeigt werden, dass für alle n [mm] \in \IN_{0} [/mm] gilt:

[mm] \integral_{0}^{2\pi}{sin(nx) dx}=0 [/mm]


Hallo,

Wie geht man sowas an? Ich habe überhaupt keinen Ansatz :( Hat vielleicht jemand einen Tip für mich, was der erste Schritt ist oder mit welcher Methode man diese Aufgabe löst?

Gruß, Andreas

        
Bezug
Integrationsmethode: losrechnen
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 03.04.2013
Autor: Roadrunner

Hallo Andi!


Was stört Dich hier bzw. wo ist das genau Problem?

Bestimme zunächst die Stammfunktion zu [mm] $\sin(n*x)$ [/mm] und setze dann die gegebenen Grenzen ein.


Gruß vom
Roadrunner

Bezug
                
Bezug
Integrationsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 03.04.2013
Autor: Mathe-Andi

Das "n" stört mich bzw. mein Ergebnis. n=0, was soll das aussagen?

[mm] \integral_{0}^{2\pi}{sin(nx) dx}=0 [/mm]

[mm] [-cos(nx)]_{0}^{2\pi}=0 [/mm]

[mm] -cos(n*2\pi)+cos(0)=0 [/mm]

[mm] cos(n*2\pi)=1 [/mm]

[mm] n*2\pi=arccos(1) [/mm]

n=0

Falsch?



Bezug
                        
Bezug
Integrationsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 03.04.2013
Autor: schachuzipus

Hallo Mathe-Andi,

 > Das "n" stört mich bzw. mein Ergebnis. n=0, was soll das aussagen?

Wie? n=0?

Das Integral soll für alle n=0,1,2,3,4,... den Wert 0 haben.



>

> [mm]\integral_{0}^{2\pi}{sin(nx) dx}=0[/mm]

>

> [mm][-cos(nx)]_{0}^{2\pi}=0[/mm]

>

> [mm]-cos(n*2\pi)+cos(0)=0[/mm]

>

> [mm]cos(n*2\pi)=1[/mm]

>

> [mm]n*2\pi=arccos(1)[/mm]

>

> n=0

>

> Falsch?

Dir scheint nicht klar, was du zeigen sollst ...

Du musst nicht n=0 zeigen.

Außerdem ist deine Stammfunktion falsch.

Es ist für [mm]n=0[/mm] doch [mm]\sin(nx)=\sin(0)[/mm], also [mm]\int\limits_{0}^{2\pi}{0 \ dx}=0[/mm]

Das passt.

Für [mm]n>0[/mm] ist [mm]\int\limits_{0}^{2\pi}{\sin(nx) \ dx}=\left[-\frac{1}{n}\cos(nx)\right]_0^{2\pi}[/mm]

Rechne das aus und schaue, ob da auch gefälligst 0 rauskommt.

Gruß

schachuzipus

Bezug
                                
Bezug
Integrationsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Mi 03.04.2013
Autor: Mathe-Andi


> Dir scheint nicht klar, was du zeigen sollst ...
>  

Stimme ich zu. Bis eben.

Das Ergebnis gefällt mir nicht. Ich schreibe mal die ganze Rechnung auf, ist glaube ich besser:


[mm] \integral_{0}^{2\pi}{sin(nx) dx}=0 [/mm]

Substitution:

t=nx; [mm] \bruch{dt}{dx}=n; dx=\bruch{dt}{n} [/mm]

[mm] \integral_{0}^{2\pi}{sin(nx) dx}=\integral_{0}^{2\pi}{sin(t) \bruch{dt}{n}} [/mm]

untere Grenze: x=0; t=nx=0

obere Grenze: [mm] x=2\pi; t=nx=n2\pi [/mm]

[mm] \integral_{0}^{2\pi}{sin(nx) dx}=\integral_{0}^{n2\pi}{sin(t) \bruch{dt}{n}}=[-cos(t)*\bruch{1}{n}]_{0}^{n2\pi}= -cos(n2\pi)*\bruch{1}{n}-(-1)*\bruch{1}{n} [/mm]

Mal ein paar Werte eingesetzt:

n=1: [mm] \approx0,006 [/mm]

n=3: [mm] \approx0,018 [/mm]

n=10: [mm] \approx0,054 [/mm]

Was soll ich davon halten?



Bezug
                                        
Bezug
Integrationsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mi 03.04.2013
Autor: abakus


> > Dir scheint nicht klar, was du zeigen sollst ...
> >

>

> Stimme ich zu. Bis eben.

>

> Das Ergebnis gefällt mir nicht. Ich schreibe mal die ganze
> Rechnung auf, ist glaube ich besser:

>
>

> [mm]\integral_{0}^{2\pi}{sin(nx) dx}=0[/mm]

>

> Substitution:

>

> t=nx; [mm]\bruch{dt}{dx}=n; dx=\bruch{dt}{n}[/mm]

>

> [mm]\integral_{0}^{2\pi}{sin(nx) dx}=\integral_{0}^{2\pi}{sin(t) \bruch{dt}{n}}[/mm]

>

> untere Grenze: x=0; t=nx=0

>

> obere Grenze: [mm]x=2\pi; t=nx=n2\pi[/mm]

>

> [mm]\integral_{0}^{2\pi}{sin(nx) dx}=\integral_{0}^{n2\pi}{sin(t) \bruch{dt}{n}}=[-cos(t)*\bruch{1}{n}]_{0}^{n2\pi}= -cos(n2\pi)*\bruch{1}{n}-(-1)*\bruch{1}{n}[/mm]

>

> Mal ein paar Werte eingesetzt:

>

> n=1: [mm]\approx0,006[/mm]

>

> n=3: [mm]\approx0,018[/mm]

>

> n=10: [mm]\approx0,054[/mm]

>

> Was soll ich davon halten?

Hast du einen Taschenrechner benutzt? Dann hätte ich eine Vermutung, wie du zu diesen falschen Ergebnissen kommst.
Ich weiß jedenfalls, dass cos 0=1, cos [mm] $2\pi$=1, cos$4\pi$=1, cos$6\pi$=1... [/mm] gilt.
Damit werden die drei von dir beispielhaft berechneten Integrale sämtlich Null. 

Gruß Abakus
>
>

Bezug
                                                
Bezug
Integrationsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Mi 03.04.2013
Autor: Mathe-Andi

Er ist auf DEG eingestellt, statt auf RAD! Asche über mein Haupt.

Danke!

Bezug
                                                        
Bezug
Integrationsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mi 03.04.2013
Autor: schachuzipus


> Er ist auf DEG eingestellt, statt auf RAD! Asche über mein
> Haupt.

Asche - und zwar tonnenweise - gehört auf dein Haupt, wenn du [mm]\cos(0)[/mm] und [mm]\cos(n\cdot{}2\pi)[/mm] überhaupt in den TR eintippst ...

Das grenzt an Frevelei ;-)

>

> Danke!

Gruß
schachuzipus

Bezug
        
Bezug
Integrationsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mi 03.04.2013
Autor: reverend

Hallo Andi,

> Es soll durch Integration gezeigt werden, dass für alle n
> [mm]\in \IN_{0}[/mm] gilt:

>

> [mm]\integral_{0}^{2\pi}{sin(nx) dx}=0[/mm]

>

> Hallo,

>

> Wie geht man sowas an? Ich habe überhaupt keinen Ansatz :(
> Hat vielleicht jemand einen Tip für mich, was der erste
> Schritt ist oder mit welcher Methode man diese Aufgabe
> löst?

Substituiere $t=nx$. Achte darauf, auch die Integrationsgrenzen mit zu substituieren!

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de