www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Integrationstrick mit Paramete
Integrationstrick mit Paramete < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationstrick mit Paramete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Sa 23.11.2013
Autor: EvelynSnowley2311

Aufgabe
Berechnen und begründen Sie

[mm] \integral_{0}^{\infty}{x^{2n} e^{-x^2} dx} [/mm]

für alle n [mm] \in \IN [/mm] . Dabei dürfen sie [mm] \integral_{0}^{\infty}{ e^{-x^2} dx} [/mm] =  [mm] \wurzel{pi} [/mm] / 2  verwenden. Benutzen Sie

[mm] x^{2n} e^{-x^2} [/mm] = [mm] (-1)^n [/mm] * [mm] (\bruch{d^n}{dp^n}) [/mm] (eingeschränkt auf p = 1) * [mm] e^{-px^2} [/mm]

Huhu zusammen,

Ich wollte eigentlich 2n mal partiell ableiten, aber ich denke ich muss diesen "trick" anwenden, allerdings verstehe ich diese Umformung

[mm] x^{2n} e^{-x^2} [/mm] = [mm] (-1)^n [/mm] * [mm] (\bruch{d^n}{dp^n}) [/mm] (eingeschränkt auf p = 1) * [mm] e^{-px^2} [/mm]

nicht :( Soll das die n-te Ableitung von p sein vom Term [mm] e^{-px^2} [/mm] ? Und das mit der EInschränkung auf p = 1 versteh ich auch nicht, wieso setzt man dann nicht direkt p = 1 :(


Wäre sehr dankbar für Hilfe !

Liebe Grüße

Eve

        
Bezug
Integrationstrick mit Paramete: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Sa 23.11.2013
Autor: ullim

Hi,

Du leitest die Funktion [mm] e^{-p*x^2} [/mm] zuerst n-mal nach p ab und setzt dann p=1. Würde von vorneherein p=1 gelten, wäre die Ableitung der Funktion [mm] e^{-p*x^2}=e^{-x^2} [/mm] gleich 0, da es keine Abhängigkeit von p mehr gibt.

Bezug
                
Bezug
Integrationstrick mit Paramete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Sa 23.11.2013
Autor: EvelynSnowley2311

Vielen Dank für die Erklärung, also mein Versuch:


[mm] \integral_{0}^{\infty}{x^{2n} e^{-x^2} dx} [/mm]

n. Vor. =

[mm] \integral_{0}^{\infty}{(-1)^n ( \bruch{d^n}{dp^n}) e^{-px^2} dx} [/mm] eingeschränkt auf p = 1

= [mm] (-1)^n [/mm] ( [mm] \bruch{d^n}{dp^n}) e^{-p} [/mm] (p eingschr. auf 1) * [mm] \integral_{0}^{\infty} e^{-x^2} [/mm] dx


n. Recht darf ich benutzen, dass das gleich


[mm] =(-1)^n [/mm] ( [mm] \bruch{d^n}{dp^n}) e^{-p} [/mm] (p eingschr. auf 1) * [mm] \bruch{\wurzel{\pi}}{2} [/mm]


Ab jetzt bin ich mir unsicher. ich denke, das ist gleich

[mm] (-1)^n [/mm] * [mm] (-1)^n e^{-1} [/mm] * [mm] \bruch{\wurzel{\pi}}{2} [/mm]

=  [mm] \bruch{\wurzel{\pi}}{2e} [/mm]

Bezug
                        
Bezug
Integrationstrick mit Paramete: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Sa 23.11.2013
Autor: ullim

Hi,

versuchs mal so

Sei [mm] I(p)=\integral_{0}^{\infty}{e^{-p*x^2} dx} [/mm]

Berechne [mm] \bruch{d^n}{dp^n}I(p)=(-1)^n\integral_{0}^{\infty}{x^{2n}e^{-px^2} dx} [/mm] an der Stelle p=1

Aus dem gegebenen Tipp folgt [mm] I(p)=\bruch{1}{2}\wurzel{\bruch{\pi}{p}} [/mm]

Nun [mm] \bruch{d^n}{dp^n}I(p) [/mm] ausrechnen und an der Stelle p=1 auswerten.

Bezug
                                
Bezug
Integrationstrick mit Paramete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Sa 23.11.2013
Autor: EvelynSnowley2311


> Hi,
>  
> versuchs mal so
>  
> Sei [mm]I(p)=\integral_{0}^{\infty}{e^{-p*x^2} dx}[/mm]
>  
> Berechne
> [mm]\bruch{d^n}{dp^n}I(p)=(-1)^n\integral_{0}^{\infty}{x^{2n}e^{-px^2} dx}[/mm]
> an der Stelle p=1
>  
> Aus dem gegebenen Tipp folgt
> [mm]I(p)=\bruch{1}{2}\wurzel{\bruch{\pi}{p}}[/mm]
>  
> Nun [mm]\bruch{d^n}{dp^n}I(p)[/mm] ausrechnen und an der Stelle p=1
> auswerten.


Ist mein Ansatz also falsch gewesen? wieos darf ich nicht alles was mit p zu tun hat einfach vors Integral ziehen? Und wo der Ausdruck [mm] \wurzel{1/p} [/mm] herkommt versteh ich nicht soo ganz und auch nicht wohin die [mm] (-1)^n [/mm] bei dir hingehen :O


Die n-te Ableitung von [mm] \bruch{\wurzel{\pi}}{2} [/mm] * [mm] \bruch{1}{\wurzel{p}} [/mm] nach p  müsste dann sowas wie

[mm] \bruch{\wurzel{\pi}}{2} [/mm] * [mm] (-1)^n [/mm] * [mm] \bruch{1}{2^{n}} [/mm] * [mm] \bruch{1}{\wurzel{p}} [/mm] sein und mit p = 1

[mm] \bruch{\wurzel{\pi}}{2} [/mm] * [mm] (-1)^n [/mm] * [mm] \bruch{1}{2^{n}} [/mm]

Bezug
                                        
Bezug
Integrationstrick mit Paramete: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Sa 23.11.2013
Autor: ullim

Hi,

> Vielen Dank für die Erklärung, also mein Versuch:
>
>
> $ [mm] \integral_{0}^{\infty}{x^{2n} e^{-x^2} dx} [/mm] $
>
> n. Vor. =
>
> $ [mm] \integral_{0}^{\infty}{(-1)^n ( \bruch{d^n}{dp^n}) e^{-px^2} dx} [/mm] $ eingeschränkt auf p = 1
>
> = $ [mm] (-1)^n [/mm] $ ( $ [mm] \bruch{d^n}{dp^n}) e^{-p} [/mm] $ (p eingschr. auf 1) * $ [mm] \integral_{0}^{\infty} e^{-x^2} [/mm] $ dx

Das ist falsch.

[mm] e^{-p}*e^{-x^2}=e^{-p-x^2} [/mm] und nicht [mm] e^{-p*x^2} [/mm]




Mit [mm] I(p)=\integral_{0}^{\infty}{e^{-p\cdot{}x^2} dx} [/mm] folgt

[mm] (-1)^n\bruch{d^n}{dp^n}I(p)=\integral_{0}^{\infty}{x^{2n}e^{-px^2} dx} [/mm] und deshalb

[mm] (-1)^n\bruch{d^n}{dp^n}I(p) \bigg|_{p = 1}=\integral_{0}^{\infty}{x^{2n}e^{-x^2} dx} [/mm]

Wende auf [mm] I(p)=\integral_{0}^{\infty}{e^{-p\cdot{}x^2} dx} [/mm] die Substitution [mm] u=\wurzel{p}*x [/mm] an.

Dann gilt [mm] I(p)=\bruch{1}{\wurzel{p}}\integral_{0}^{\infty}{e^{-u^2} du}=\bruch{1}{2}\wurzel{\bruch{\pi}{p}} [/mm]

Und jetzt [mm] \bruch{1}{2}\wurzel{\bruch{\pi}{p}} [/mm] n-mal nach p Ableiten und den entstehenden Ausdruck an der Stelle p=1 auswerten.

Bezug
                                                
Bezug
Integrationstrick mit Paramete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Sa 23.11.2013
Autor: EvelynSnowley2311


> Hi,
>  
> > Vielen Dank für die Erklärung, also mein Versuch:
>  >

> >
> > [mm]\integral_{0}^{\infty}{x^{2n} e^{-x^2} dx}[/mm]
>  >

> > n. Vor. =
>  >

> > [mm]\integral_{0}^{\infty}{(-1)^n ( \bruch{d^n}{dp^n}) e^{-px^2} dx}[/mm]
> eingeschränkt auf p = 1
>  >

> > = [mm](-1)^n[/mm] ( [mm]\bruch{d^n}{dp^n}) e^{-p}[/mm] (p eingschr. auf 1) *
> [mm]\integral_{0}^{\infty} e^{-x^2}[/mm] dx
>  
> Das ist falsch.
>  
> [mm]e^{-p}*e^{-x^2}=e^{-p-x^2}[/mm] und nicht [mm]e^{-p*x^2}[/mm]
>  
>
>
>
> Mit [mm]I(p)=\integral_{0}^{\infty}{e^{-p\cdot{}x^2} dx}[/mm] folgt
>  
> [mm](-1)^n\bruch{d^n}{dp^n}I(p)=\integral_{0}^{\infty}{x^{2n}e^{-px^2} dx}[/mm]
> und deshalb
>  
> [mm](-1)^n\bruch{d^n}{dp^n}I(p) \bigg|_{p = 1}=\integral_{0}^{\infty}{x^{2n}e^{-x^2} dx}[/mm]
>  
> Wende auf [mm]I(p)=\integral_{0}^{\infty}{e^{-p\cdot{}x^2} dx}[/mm]
> die Substitution [mm]u=\wurzel{p}*x[/mm] an.
>  
> Dann gilt
> [mm]I(p)=\bruch{1}{\wurzel{p}}\integral_{0}^{\infty}{e^{-u^2} du}=\bruch{1}{2}\wurzel{\bruch{\pi}{p}}[/mm]
>  
> Und jetzt [mm]\bruch{1}{2}\wurzel{\bruch{\pi}{p}}[/mm] n-mal nach p
> Ableiten und den entstehenden Ausdruck an der Stelle p=1
> auswerten.

Vielen lieben Dank für die Erklärung!


[mm] \bruch{1}{2}\wurzel{\bruch{\pi}{p}} [/mm] = [mm] \wurzel{\pi}/2 [/mm] *  [mm] \bruch{1}{\wurzel{p}} [/mm]

die n-te Ableitung von [mm] \bruch{1}{\wurzel{p}} [/mm] ist gar nicht mal so leicht.
ich denke es müsste so aussehen:

[mm] (-1)^n [/mm] * [mm] p^{-\bruch{1}{2} - \bruch{2n}{2}} [/mm] * [mm] \bruch{1}{2^n} [/mm] * [mm] \produkt_{i=1}^{n} [/mm] (2i -1)

und für p=1 dann [mm] (-1)^n [/mm] * [mm] \produkt_{i=1}^{n} [/mm] (2i -1) * [mm] \bruch{1}{2^n}[/mm]

Bezug
                                                        
Bezug
Integrationstrick mit Paramete: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Sa 23.11.2013
Autor: ullim

Hi,

die n-te Ableitung von [mm] p^{-\bruch{1}{2}} [/mm] ist

[mm] (-1)^n*\bruch{1}{2}*\bruch{3}{2}* [/mm] ... [mm] \cdot \bruch{2*n-1}{2}=\bruch{\produkt_{k=1}^{n}(2k-1)}{2^n} [/mm]

und vom letzten Produkt kannst Du per Induktion zeigen das gleich [mm] \bruch{(2n)!}{4^n*n!} [/mm] ist.

Bezug
                                                                
Bezug
Integrationstrick mit Paramete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Sa 23.11.2013
Autor: EvelynSnowley2311


> Hi,
>  
> die n-te Ableitung von [mm]p^{-\bruch{1}{2}}[/mm] ist
>  
> [mm](-1)^n*\bruch{1}{2}*\bruch{3}{2}*[/mm] ... [mm]\cdot \bruch{2*n-1}{2}=\bruch{\produkt_{k=1}^{n}(2k-1)}{2^n}[/mm]
>  
> und vom letzten Produkt kannst Du per Induktion zeigen das
> gleich [mm]\bruch{(2n)!}{4^n*n!}[/mm] ist.

hey auf der rechten Seite steht aber auch noch die [mm] (-1)^n [/mm] oder?

Bezug
                                                                        
Bezug
Integrationstrick mit Paramete: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Sa 23.11.2013
Autor: ullim

Hi,

ja da hast Du recht, das hab ich vergessen.

Bezug
                                                                                
Bezug
Integrationstrick mit Paramete: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 So 24.11.2013
Autor: EvelynSnowley2311

Ok vielen lieben Dank dass du mir dadurch geholfen hast :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de