www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrierbarkeit von Funktion
Integrierbarkeit von Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit von Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Mi 13.01.2016
Autor: mikemodanoxxx

Aufgabe
[mm] \integral_{-\infty}^{\infty}{\integral_{-\infty}^{\infty}{e^{-(x+y)^2} dx}dy} [/mm]

Ich würde gerne die Lösung des obigen Integrals berechnen, fall möglich. Ich habe allerdings keine Idee, wie ich hier vorgehen soll und wäre über einen Tipp dankbar. In Matlab habe ich es mal numerisch rechnen lassen und habe eine Lösung bekommen, so dass ich denke, das es gehen sollte.

        
Bezug
Integrierbarkeit von Funktion: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 10:50 Mi 13.01.2016
Autor: Richie1401

Hallo,

>
> [mm]\integral_{-\infty}^{\infty}{\integral_{-\infty}^{\infty}{e^{-(x+y)^2} dx}dy}[/mm]

Substituiere doch zunächst z=x+y. Das entstehende Integral dürfte bekannt sein. Führe dann die zweite Integration aus.

>  
> Ich würde gerne die Lösung des obigen Integrals
> berechnen, fall möglich. Ich habe allerdings keine Idee,
> wie ich hier vorgehen soll und wäre über einen Tipp
> dankbar. In Matlab habe ich es mal numerisch rechnen lassen
> und habe eine Lösung bekommen, so dass ich denke, das es
> gehen sollte.


Bezug
                
Bezug
Integrierbarkeit von Funktion: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:10 Mi 13.01.2016
Autor: Gonozal_IX

Hiho,

die Substitution funktioniert nicht, hast du das mal nachgerechnet?

edit: Da lag ich wohl falsch, funktioniert doch :-)

Gruß,
Gono

Bezug
        
Bezug
Integrierbarkeit von Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mi 13.01.2016
Autor: Gonozal_IX

Hiho,

verwende Polarkoordinaten.

Gruß,
Gono

Bezug
                
Bezug
Integrierbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 13.01.2016
Autor: Richie1401

Hi,

Polarkoordinaten würde ich auch nehmen, wenn es sich um [mm] x^2+y^2 [/mm] handelt und nicht wie hier um [mm] (x+y)^2. [/mm]

Vielleicht habe ich auch nur Tomaten auf den Augen...


Bezug
                        
Bezug
Integrierbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Mi 13.01.2016
Autor: Gonozal_IX

Hiho,

> Polarkoordinaten würde ich auch nehmen, wenn es sich um
> [mm]x^2+y^2[/mm] handelt und nicht wie hier um [mm](x+y)^2.[/mm]

sind wir uns zumindest einig, dass bei deinem Ansatz [mm] $+\infty$ [/mm] herauskommt?
Das innere Integral existiert und liefert einen konstanten Wert ungleich 0, daher kommt dann unendlich raus.

Bei meinem Ansatz sollte im Integranden nachher stehen:

[mm] $re^{(r\sin(x) + r\cos(x))^2} [/mm] = [mm] re^{(r^2(1+\sin(2x))}$ [/mm]

Dieses Integrand ist nach r elementar lösbar.
Verbleibt ein elementar lösbares Integral nach x. Da könnte auch noch [mm] $+\infty$ [/mm] rauskommen, das habe ich aber noch nicht nachgerechnet...

edit: Jetzt schon, kommt tatsächlich [mm] $+\infty$ [/mm] heraus, insofern ist dein Weg vermutlich schneller und ich war etwas vorschnell.... Verzeihung.

Gruß,
Gono

Bezug
                                
Bezug
Integrierbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Mi 13.01.2016
Autor: mikemodanoxxx

Danke euch zwei..

Bezug
                                
Bezug
Integrierbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Mi 13.01.2016
Autor: Richie1401


> Hiho,
>  
> > Polarkoordinaten würde ich auch nehmen, wenn es sich um
> > [mm]x^2+y^2[/mm] handelt und nicht wie hier um [mm](x+y)^2.[/mm]
>  
> sind wir uns zumindest einig, dass bei deinem Ansatz
> [mm]+\infty[/mm] herauskommt?

Richtig.

>  Das innere Integral existiert und liefert einen konstanten
> Wert ungleich 0, daher kommt dann unendlich raus.
>  
> Bei meinem Ansatz sollte im Integranden nachher stehen:
>  
> [mm]re^{(r\sin(x) + r\cos(x))^2} = re^{(r^2(1+\sin(2x))}[/mm]

Ist zwar dann lösbar, aber durchaus weit komplizierter zu berechnen. Es sei denn, man schätzt es ab.

>  
> Dieses Integrand ist nach r elementar lösbar.
>  Verbleibt ein elementar lösbares Integral nach x. Da
> könnte auch noch [mm]+\infty[/mm] rauskommen, das habe ich aber
> noch nicht nachgerechnet...
>  
> edit: Jetzt schon, kommt tatsächlich [mm]+\infty[/mm] heraus,
> insofern ist dein Weg vermutlich schneller und ich war
> etwas vorschnell.... Verzeihung.

Schade nur, dass meine Antwort noch als fehlerhaft markiert ist.

>  
> Gruß,
>  Gono


Bezug
                                        
Bezug
Integrierbarkeit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Mi 13.01.2016
Autor: Gonozal_IX

Hiho,

einmal editieren, dann ist sie es nicht mehr.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de