www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrieren von e-Funktion
Integrieren von e-Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren von e-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:32 So 07.03.2010
Autor: Annyy

Aufgabe
[mm] \integral_ {}^{}{(e^2x-1)/(e^x+2)} [/mm]

Also, ich hab bei dieser Aufgabe das [mm] e^x [/mm] mit t substituiert und dann die Produktregel angewendet (also  [mm] \integral_ [/mm] a*b = A*b - [mm] \integral_ [/mm]  A*b')
Ich hab leider seit der Matura nicht mehr integriert und stehe hier ein bisschen an, weil ich den therm nicht vereinfachen kann.
kann mir jemand helfen?

        
Bezug
Integrieren von e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 07.03.2010
Autor: Doing

Hallo!

Partielle Integration bringt dich hier nicht weiter. Ich gehe mal davon aus dass in der Aufgabe im Zähler exp(2x) stehen soll (?).

Schreibe dann das Integral als:
[mm]\integral{\bruch{e^{2x}}{e^x - 1} dx +\integral{\bruch{2}{e^x -1}dx}} [/mm]

Führe dann bei beiden Integralen die Substitution [mm] e^x [/mm] durch. Das erste kannst du jetzt sofort lösen; beim zweiten musst du noch eine kleine Partialbruchzerlegung hinterherschieben.

Gruß,
Doing


Bezug
                
Bezug
Integrieren von e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 So 07.03.2010
Autor: Annyy

also, mir fällt wirklich auf, dass mir die übung im integrieren fehlt :)

also, ich hab die funktion jetzt auf 2 integrale aufgespalten und substituiert.

das erste integral heißt somit:
[mm] \integral_{}^{}{t^2/(t+2)} [/mm]
gibt es dann eine "quotientenregel" zum integrieren? ich hab sie dann nämlich wieder weiter aufgespalten als
[mm] \integral_{}^{}{(t^2)*(1/(t+2))} [/mm]
nach mehrerenmalen partielle integration hauts mich dann mit den logarithmen durcheinander, weil dass dann immer wieder mit multiplikationen weitergeht.
ich verzweifle :(


Bezug
                        
Bezug
Integrieren von e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 07.03.2010
Autor: Doing

Hallo!

> also, mir fällt wirklich auf, dass mir die übung im
> integrieren fehlt :)
>  
> also, ich hab die funktion jetzt auf 2 integrale
> aufgespalten und substituiert.
>  
> das erste integral heißt somit:
>  [mm]\integral_{}^{}{t^2/(t+2)}[/mm]

Das stimmt nicht ganz; im Zähler steht t, nicht [mm] t^2 [/mm] (warum?).
Schreibe dann:
[mm] \integral{\bruch{t}{t+2}dt}=\integral{(1-\bruch{2}{t+2})dt} [/mm]

>  gibt es dann eine "quotientenregel" zum integrieren? ich
> hab sie dann nämlich wieder weiter aufgespalten als
> [mm]\integral_{}^{}{(t^2)*(1/(t+2))}[/mm]
>  nach mehrerenmalen partielle integration hauts mich dann
> mit den logarithmen durcheinander, weil dass dann immer
> wieder mit multiplikationen weitergeht.
>  ich verzweifle :(
>  

Gruß,
Doing

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de