www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Intergral ü.e. stetige Kurve
Intergral ü.e. stetige Kurve < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intergral ü.e. stetige Kurve: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:48 Fr 27.10.2006
Autor: Imkeje

Aufgabe
Zeigen sie, dass für das Integral über eine stetige Kurve [mm] v:[a,b]\to\IR^{2} [/mm] gilt:
[mm] \parallel\(\integral_{a}^{b}{v(t) dt})\parallel \le \integral_{a}^{b}{\parallel(v(t)) \parallel dt} [/mm]


Kann mir bei dieser Aufgabe vielleicht jemand einen Tipp oder Hinweis geben, finde einfach keienn vernünftigen Ansatz!
Imke

        
Bezug
Intergral ü.e. stetige Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 27.10.2006
Autor: ullim

Hi Imkeje,


schreib das Integral doch als Summe und bilde den Grenzwert für [mm] \Delta{t} [/mm] gegen 0 und benutzte dabei die Dreiecksungleichung für Summen, also [mm] |a+b|\le|a|+|b|. [/mm] Dann kann man das geforderte folgern.

mfg ullim

Bezug
                
Bezug
Intergral ü.e. stetige Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Sa 28.10.2006
Autor: Imkeje

Also ich habs jetzt mal versucht, aber mir kommt das irgendwie viel zu einfach vor!
Also

[mm] \parallel \integral_{a}^{b}{v(t) dt} \parallel [/mm] =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} \summe_{i=1}^{n} [/mm] v(ti) [mm] \Delta [/mm] t [mm] \parallel [/mm] =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] (v(t1) [mm] \Delta [/mm] t +...+ v(tn) [mm] \Delta [/mm] t ) [mm] \parallel [/mm]  =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(t1) [mm] \Delta [/mm] t +...+ [mm] \limes_{ \Delta t \rightarrow\infty} [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm]

[mm] \le [/mm] ( Dreiecksungleichung)

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(t1) [mm] \Delta [/mm] t [mm] \parallel [/mm]  +...+ [mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm] =

[mm] \limes_{ \Delta t \rightarrow\infty}( \parallel [/mm] v(t1) [mm] \Delta [/mm] t [mm] \parallel [/mm]  +...+ [mm] \parallel [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm] ) =

[mm] \limes_{ \Delta t \rightarrow\infty}( \parallel [/mm] v(t1) [mm] \parallel \Delta [/mm] t +...+ [mm] \parallel [/mm] v(tn) [mm] \parallel \Delta [/mm] t ) =


[mm] \integral_{a}^{b}{ \parallel v(t) dt \parallel } [/mm]

Ist das so richtig? Bin mir da sehr unsicher?

Wenn man dies nun bewiesen hat, soll man weiter folgern, dass für eine stetig differenzierbare Kurve c: [a,b] [mm] \to \IR [/mm] ^ {n} gilt

L(c) [mm] \ge \parallel [/mm] c(b) - c(a) [mm] \parallel [/mm]

Hab mir da folgendes gedacht:

c ist stetig differenzierbar, setzte also dc/dt := v(t) , diese ist stetig und für eine stetige Kurve hat man die Behauptung doch gerade ebenbewiesen, richtig?

Zudem soll das Ergebnis geometrisch gedeutet werden!

Das  muß irgendwas mit des Chauchy-Schwarz- Ungleichung zutuen haben:

v,w [mm] \in \IR [/mm] ^ {n} :
Skalarptodukt von (v,w) [mm] \le \parallel [/mm] v [mm] \parallel \parallel [/mm] w [mm] \parallel [/mm]

Wenn dabei Gleichheit vor liegt sind v und w parallel

Ich hoffe mir kann jemand weiter helfen!
Mfg Imke

Bezug
                        
Bezug
Intergral ü.e. stetige Kurve: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:49 Sa 28.10.2006
Autor: Imkeje

Also ich habs jetzt mal versucht, aber mir kommt das irgendwie viel zu einfach vor!
Also

[mm] \parallel \integral_{a}^{b}{v(t) dt} \parallel [/mm] =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} \summe_{i=1}^{n} [/mm] v(ti) [mm] \Delta [/mm] t [mm] \parallel [/mm] =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] (v(t1) [mm] \Delta [/mm] t +...+ v(tn) [mm] \Delta [/mm] t ) [mm] \parallel [/mm]  =

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(t1) [mm] \Delta [/mm] t +...+ [mm] \limes_{ \Delta t \rightarrow\infty} [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm]

[mm] \le [/mm] ( Dreiecksungleichung)

[mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(t1) [mm] \Delta [/mm] t [mm] \parallel [/mm]  +...+ [mm] \parallel \limes_{ \Delta t \rightarrow\infty} [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm] =

[mm] \limes_{ \Delta t \rightarrow\infty}( \parallel [/mm] v(t1) [mm] \Delta [/mm] t [mm] \parallel [/mm]  +...+ [mm] \parallel [/mm] v(tn) [mm] \Delta [/mm] t  [mm] \parallel [/mm] ) =

[mm] \limes_{ \Delta t \rightarrow\infty}( \parallel [/mm] v(t1) [mm] \parallel \Delta [/mm] t +...+ [mm] \parallel [/mm] v(tn) [mm] \parallel \Delta [/mm] t ) =


[mm] \integral_{a}^{b}{ \parallel v(t) dt \parallel } [/mm]

Ist das so richtig? Bin mir da sehr unsicher?

Wenn man dies nun bewiesen hat, soll man weiter folgern, dass für eine stetig differenzierbare Kurve c: [a,b] [mm] \to \IR [/mm] ^ {n} gilt

L(c) [mm] \ge \parallel [/mm] c(b) - c(a) [mm] \parallel [/mm]

Hab mir da folgendes gedacht:

c ist stetig differenzierbar, setzte also dc/dt := v(t) , diese ist stetig und für eine stetige Kurve hat man die Behauptung doch gerade ebenbewiesen, richtig?

Zudem soll das Ergebnis geometrisch gedeutet werden!

Das  muß irgendwas mit des Chauchy-Schwarz- Ungleichung zutuen haben:

v,w [mm] \in \IR [/mm] ^ {n} :
Skalarptodukt von (v,w) [mm] \le \parallel [/mm] v [mm] \parallel \parallel [/mm] w [mm] \parallel [/mm]

Wenn dabei Gleichheit vor liegt sind v und w parallel

Ich hoffe mir kann jemand weiter helfen!
Mfg Imke


Bezug
                                
Bezug
Intergral ü.e. stetige Kurve: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 30.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de