www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Interpolation
Interpolation < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolation: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 17.01.2012
Autor: MarquiseDeSade

Guten Abend Allerseits,

ich bräuchte mal Hilfe im Bereich der linearen Interpolation. Gegeben sind folgende Diskontfaktoren:


[mm] d_1=0,9866 [/mm]
[mm] d_2=0,9668 [/mm]
[mm] d_3=0,8860 [/mm]
[mm] d_4=0,8690 [/mm]


Wenn jetzt der Diskontfaktor [mm] d_{1.5} [/mm] durch lineare Interpolation bestimmt werden soll - wie geht das? Habe mich im Internet bezüglich Interpolation eingelesen, aber hatte vorher noch nie Kontakt damit und dementsprechend bin ich leicht überfordert ;)

Über eine kurze Erläuterung wäre ich dankbar.

Gruß
Tobias


        
Bezug
Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 17.01.2012
Autor: chrisno

Es gibt verschiedene Wege, das zu erklären. Ich mach es mal über Geraden. Lineare Inerpolation heißt eine Gerade durch die beiden Punkte zu legen und dann über die Gerade die gewünschten Zwischenwerte zu bestimmen.
In Deinem Beispiel: [mm] $P_1:(1/0,9866)$ [/mm] und [mm] $P_2:(2/0,9668)$ [/mm] Aus diesen beiden Punkten berechnest Du eine Gerade g(x) und bestimmst dann g(1,5).
In diesem speziellen Fall geht es aber viel einfacher. 1,5 liegt in der Mitte zwischen 1 und 2. Damit liegt der gesuchte Wert in der Mitte zwischen 0,9866 und 0,9668.


Bezug
                
Bezug
Interpolation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 18.01.2012
Autor: MarquiseDeSade

Hey ;)

Danke für deine Anregung und Hilfestellung. Ich habe mal eine eine Gleichung aufgestellt:

[mm]g(x)=-0,0198x+1,0064[/mm]

Der Fall für g(1.5) war vielleicht ein wenig unglücklich gewählt, ist er doch der Einfachste ;)

In Klausuren habe ich aber leider nicht die Zeit, Gleichungssysteme aufzustellen. Im Internet findet sich speziell für Diskontfaktoren folgende Formel:

[mm] d_t=\bruch{db-da}{b-a}*(t-a)+d_a [/mm]

Leider habe ich keine genaue Definition der Variablen gefunden und für eine Klausur wäre mir eine "feste Formel" lieber zum interpolieren, als Gleichungssysteme aufzustellen ;(

Gibt es also Formeln, mit denen man schnell linear interpolieren kann? Diverse Suchmaschinen liefern mir leider keine brachbaren Infos - wenn doch, dann meist mathematisch zu komplex für mich ;=)

Bezug
                        
Bezug
Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 18.01.2012
Autor: ullim

Hi,

bei Deiner Aufgabenstellung gibt es verschieden Möglichkeiten um zu einer Lösung zu kommen.

Eine Möglichkeit ist, durch die Punkte einen linearen Polygonzug zu legen. D.h. Du verbindest die einzelnen Punkte durch Geraden. In dem Fall ist die Formel für eine Interpolation die von Dir angegebene Formel

[mm] d_t=\bruch{d_b-d_a}{b-a}\cdot{}(t-a)+d_a [/mm] wobei [mm] a\le{t}\le{b} [/mm]

Eine andere Möglichkeit ist, eine Ausgleichsgerade durch die vier Punkte zu legen. Hierbei wird die quadratische Fehlersumme durch eine entsprechende Wahl der Geradenparameter minimiert.

Im folgenden Bild sind die beiden Möglichkeiten dargestellt. Du kannst ja selbst entscheiden was besser zu Deinem Problem passt.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mi 18.01.2012
Autor: chrisno

Die Formel ist das Vorgehen mit der Geradengleichung, fertig durchgerechnet.
>  
> [mm]d_t=\bruch{db-da}{b-a}*(t-a)+d_a[/mm]
>  

[mm] $d_t$ [/mm] = das Ergebnis, der interpolierte Wert
[mm] $d_a$ [/mm] = der Funktionswert des einen Punktes (0,9866 in dem Beispiel)
[mm] $d_b$ [/mm] = der Funktionswert des anderen Punktes (0,9668 in dem Beispiel)
a und b sind die entsprechenden "x-Werte" also 1 und 2
Der Bruch ist damit die Geradensteigung, so lässt sich das vielleicht auch gut merken.
t ist der "x-Wert", an dem interpoliert werden soll (0,5 in dem Beispiel)
(t-a) ist das Stück, das man vom linken Wert in Richtung des rechts liegenden Wertes auf der x-Achse geht.
Zur Interpretation stelle ich einmal um:
[mm]d_t=d_a+\bruch{d_b-d_a}{b-a}*(t-a)[/mm]
Um den neuen Wert zu berechnen, setzt man sich als Startwert auf den linken Punkt: [mm] $d_a$. [/mm] Dann geht man das benötigte Teilstück in Richtung des rechten Punkts auf der x-Achse weiter. Durch Multiplikation mit der Geradensteigung wird der Anstieg (oder Abstieg) zum Zielpunkt in y-Richtung berechnet.


Bezug
                                
Bezug
Interpolation: Rückfrage Formel
Status: (Frage) beantwortet Status 
Datum: 09:55 Do 19.01.2012
Autor: MarquiseDeSade

Guten Morgen,

herzlichen Dank ullim, für deine visuelle Darstellung. Damit hast du mir die möglichen Wege sehr gut verdeutlichen können.

Chrisno, ich habe jetzt mal versucht, mit der Formel auf das Ergebnis zu kommen:


[mm] d_a=0,9866 [/mm]
[mm] d_b=0,9668 [/mm]

[mm]a=1[/mm]
[mm]b=2[/mm]
[mm]t=0,5[/mm]

[mm]d_t=\bruch{0,9668-0,9866}{2-1}*(0,5-1)+0,9866 = 0,9965[/mm]

Dieses Ergebnis ist ja leider nicht richtig. Es sollte doch 0,9767 heraus kommen, oder?

Wenn ich für (t-a) direkt 0,5 eingebe, passt es. Wo liegt mein Denkfehler?



Bezug
                                        
Bezug
Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Do 19.01.2012
Autor: chrisno

t ist 1,5.
(t-a) ist die Differenz also (1,5 - 1) = 0,5

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de