www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Interpolationsfehler gegen 0
Interpolationsfehler gegen 0 < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolationsfehler gegen 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 13.05.2010
Autor: Lyrn

Aufgabe
[mm]f:[a,b] \to \IR[/mm] sei unendlich oft differenzierbar, und alle Ableitungen [mm]f^{(n)}[/mm] seinen gleichmäßig in [mm]n[/mm] beschränkt. Beweisen Sie, dass für [mm]b-a \le 1[/mm] der Interpolationsfehler für jede Wahl von Stützstellen [mm]a=x_{0}<...

Hallo,
ich finde für diese Aufgabe keinen richtigen Ansatz der mich weiter bringt.

Aus der Vorlesung weiß ich, dass die Fehlerabschätzung definiert ist durch:

[mm]||f-p_{n}||_{\infty}\le \bruch{1}{(n+1)!}*||f-p_{n+1}||_{\infty}*||\nu||_{\infty}[/mm]

wobei [mm]\nu=\produkt_{k=0}^{n}(x-x_{k})[/mm]

Hier könnte man ja sagen, dass wenn [mm]n[/mm] gegen [mm] \infty [/mm] geht, dann wird [mm]\bruch{1}{(n+1)!}*||f-p_{n+1}||_{\infty}*||\nu||_{\infty}[/mm] 0 und die Aussage wäre bewiesen.
Aber ich muss ja irgendwie das [mm]b-a \le 1[/mm] verwenden.

Hoffe jemand kann mir helfen!

        
Bezug
Interpolationsfehler gegen 0: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Do 13.05.2010
Autor: zahllos

Hallo,

für den Fehler bei der Polynominterpolation gilt: $ [mm] ||f-p_{n}||_{\infty}\le \bruch{1}{(n+1)!}\cdot{}||f^{n+1}||_{\infty}\cdot{}||\nu||_{\infty} [/mm] $
In deinem Fall ist:  [mm] ||\nu||_{\infty}<1 [/mm] und [mm] {}||f^{n+1}||_{\infty}

Bezug
                
Bezug
Interpolationsfehler gegen 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Do 13.05.2010
Autor: Lyrn

Reicht diese Erkenntnis denn schon aus, wenn ich noch sage dass [mm] \bruch{1}{(n+1)!}[/mm] gegen 0 konvergiert oder muss ich da noch mehr zeigen?

Bezug
                        
Bezug
Interpolationsfehler gegen 0: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Do 13.05.2010
Autor: zahllos

Hallo Lyrn,

ich denke das reicht. Aber sieht mal nach, ob ihr diese Fehlerabschätzung (oder eine äuivalente Formulierung, aus der sich diese Abschätzung herleiten läßt) in der Vorlesung hattet.  Die Fehlerabschätzung die du genannt hast, ist mir unbekannt.


Bezug
                                
Bezug
Interpolationsfehler gegen 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Do 13.05.2010
Autor: Lyrn

Du hast Recht, ich hatte bei meiner Formel einen Tippfehler drin.
Kann ich denn die Konstante C für [mm]f^{n+1}
Als ich meinen Tutor fragte ob die Argumentation durch [mm]\bruch{1}{(n+1)!} \to 0[/mm] gültig ist, meinte er dass im Allgemeinen nicht gilt, dass [mm](a \to 0) \Rightarrow (a*b \to 0)[/mm].

Daher frage ich mich ob die Argumentation ausreicht, wenn ich zusätzlich sage dass $ [mm] {}||f^{n+1}||_{\infty}

Bezug
                                        
Bezug
Interpolationsfehler gegen 0: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Do 13.05.2010
Autor: zahllos

Hallo,

du sagtest, dass die Ableitungen von f gleichmäßig beschränkt sein sollen. Ich habe das so verstanden, dass es eine Konstante gibt (die man nicht unbedingt kennt), sodass alle Ableitungen im Betrag kleiner als diese Konstante sind. Diese Konstante wäre dann das C. Berechnen kann man das i.A. nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de