www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Intervall Bijektion
Intervall Bijektion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervall Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 15.11.2012
Autor: black_jaguar

Aufgabe
Es sei I ein beliebiges Intervall. Finden Sie eine Bijektion  f : I [mm] \to \IR [/mm]

Kann mir jemand zu der Aufgabe Tipps geben wie ich es mache bzw die Aufgabe mir so erklären das ich weiß was ich machen muss.

        
Bezug
Intervall Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Do 15.11.2012
Autor: wieschoo


> Es sei I ein beliebiges Intervall.

offen oder abgeschlossen?

> Finden Sie eine
> Bijektion  f : I [mm]\to \IR[/mm]
>  Kann mir jemand zu der Aufgabe
> Tipps geben wie ich es mache bzw die Aufgabe mir so
> erklären das ich weiß was ich machen muss.

1) Überlege dir, dass es genügt das Intervall [0,1] oder (0,1) zu betrachten.

2) Für ein offenes Intervall ist es schnell lösbar. Dafür betrachtet man eine geeignete trigonometrische Funktion.

3) Ist auch ein abgeschlossenes Intervall auf R bijektiv abzubilden, so verlangt es mehr Arbeit. Hier würde ich mit dem Logarithmus an deiner Stelle experimentieren. Da muss man wohl aber in der Funktion eine Fallunterscheidung machen.

4) Für die komischen Fälle, wie u.a. (0,1] würde ich mir eine Bijektion zwischen (0,1) und (0,1] überlegen.

Bezug
                
Bezug
Intervall Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 15.11.2012
Autor: black_jaguar

was ich noch nicht verstehe wie kann man überhaupt von einem Intervall auf Zahlen abbilden. Heißt das das ich eine Zahl aus dem Intervall hole und die dann einer Zahl in [mm] \IR [/mm] zuordne. Bzw wie schreibe ich das ganze Mathematisch.

Bezug
                        
Bezug
Intervall Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 15.11.2012
Autor: wieschoo


> was ich noch nicht verstehe wie kann man überhaupt von
> einem Intervall auf Zahlen abbilden. Heißt das das ich
> eine Zahl aus dem Intervall hole und die dann einer Zahl in
> [mm]\IR[/mm] zuordne.

Ja

> Bzw wie schreibe ich das ganze Mathematisch.

Du suchst eine bijektive Funktion [mm]f \colon I \to \IR[/mm].

Bsp.: Bijektion zwischen {1,2} und {4,5}. Dann ist [mm]f\colon \{1,2\}\to \{4,5\} [/mm] mit [mm]f(1)=4,f(2)=5[/mm] eine mögliche bijektive Funktion.

Welche Anforderung hat man den an f zu stellen, wenn f bijektiv sein soll?

Bezug
                                
Bezug
Intervall Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Do 15.11.2012
Autor: black_jaguar

Für bijektiv muss man subjektiv und injektiv zeigen. Aber wenn ich ein Intervall hab und es auf den Zahlenraum [mm] \IR [/mm] abbilde, dann kann ich doch einfach die Identitätsabbildung holen.

zb [0,1] [mm] \to \IR [/mm]  mit f(0) [mm] \mapsto [/mm] 0 , f(1) [mm] \mapsto [/mm] 1, f(1/2) [mm] \mapsto [/mm] 1/2 ... usw und dies ist auf jedenfall bijektiv

Bezug
                                        
Bezug
Intervall Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Do 15.11.2012
Autor: wieschoo


> Für bijektiv muss man subjektiv und injektiv zeigen.

Genau!

> Aber
> wenn ich ein Intervall hab und es auf den Zahlenraum [mm]\IR[/mm]
> abbilde, dann kann ich doch einfach die
> Identitätsabbildung holen.
>  
> zb [0,1] [mm]\to \IR[/mm]  mit f(0) [mm]\mapsto[/mm] 0 , f(1) [mm]\mapsto[/mm] 1,
> f(1/2) [mm]\mapsto[/mm] 1/2 ... usw und dies ist auf jedenfall
> bijektiv

Nein!

[mm] $f\colon [0,1]\to [0,1],\; x\mapsto [/mm] x$ ist bijektiv
[mm] $f\colon [0,1]\to \IR,\; x\mapsto [/mm] x$ ist nicht surjektiv

Nehmen wir mal den einfachen Fall

ges.: [mm] $f\colon [/mm] (0,1) [mm] \to \IR$ [/mm] bijektiv

Das Urbild von jeder reellen Zahl muss in (0,1) liegen. Du suchst also eine (injektive) Funktion, die beim zeichnen im Koordinatensystem auf der x-Achse nur zwischen 0 und 1 lebt, aber Funktionswerte zwischen [mm] $-\infty$ [/mm] und [mm] $\infty$ [/mm] annimmt.
In der ersten Antwort habe ich deine Suche schon eingeschränkt.

Bezug
                                                
Bezug
Intervall Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Do 15.11.2012
Autor: black_jaguar

Für offenen Intervall: Also ich schätze das Tangens dies tut , besser gesagt :  f(x)=tan(pi*x + pi/2), das er bijektiv ist nicht schwer zu zeigen.

Eine Bijektion von [0,1] auf [0,r] ist durch die Funktion f(x)=rx , das selbe gilt für offene Integralle.

Dann brächte ich noch 2 Bijektionen nämlich von offen zu geschlossenen Intervall und zu halboffenen Intervall

Ist das so richtig. wie finde ich den die letzten 2 bijektive Funktionen?

Bezug
                                                        
Bezug
Intervall Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Do 15.11.2012
Autor: wieschoo


> Für offenen Intervall: Also ich schätze das Tangens dies
> tut , besser gesagt :  f(x)=tan(pi*x + pi/2), das er
> bijektiv ist nicht schwer zu zeigen.

;-)

>
> Eine Bijektion von [0,1] auf [0,r] ist durch die Funktion
> f(x)=rx , das selbe gilt für offene Integralle.

und verschieben kann man die Intervalle auch.

>
> Dann brächte ich noch 2 Bijektionen nämlich von offen zu
> geschlossenen Intervall und zu halboffenen Intervall
>  
> Ist das so richtig. wie finde ich den die letzten 2
> bijektive Funktionen?

Hilft [mm]f(x)=\begin{cases} \ln x - \ln 0.5, & \textrm{fuer } x<0.5 \\ -\ln (1-x)+\ln 0.5, & \textrm{fuer } x >0.5 \end{cases}[/mm]  dir weiter?

Ansonsten gibt es noch:
https://matheraum.de/read?i=807945

Oder:
Zu (0,1] -> (0,1)

Betrachte unendliche Folge [mm](x_k)_{k\geq 1}[/mm] von paarweise verschiedenen Zahlen aus (0,1) und setze [mm]x_0:=1[/mm]. Dann betrachte [mm]f(x_n)=x_{n+1}[/mm] für [mm]n\geq 0[/mm] und f(n)=n für [mm]n\in (0,1][/mm] und [mm]\neq x_i[/mm] für ein i und [mm]\neq 1[/mm]. Dann ist [mm]f\colon (0,1]\to (0,1] )[/mm] bijektiv.

Bezug
                                                                
Bezug
Intervall Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 15.11.2012
Autor: black_jaguar

Danke erstmal! Mir ist zwar klar das die angegebene ln Funktion genau die nötigen Bedingungen erfüllt, aber drauf wäre ich glaub ich nicht gekommen.

Bezug
                                                                        
Bezug
Intervall Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Fr 16.11.2012
Autor: Marcel

Hallo blackjaguar,

> Danke erstmal! Mir ist zwar klar das die angegebene ln
> Funktion genau die nötigen Bedingungen erfüllt, aber
> drauf wäre ich glaub ich nicht gekommen.

ich weiß jetzt auch nicht, was genau ihr da definiert habt - da müßte
ich nochmal reingucken, zumal ich selbst dann nicht weiß, welche
Funktion Du hier meinst (zudem solltest Du auch beweisen, dass
eine angegebene Funktion bijektiv ist, und es nicht nur als "klar"
hinnehmen...)

Nur mal nebenbei:
Betrachte [mm] $m(x):=\frac{x}{1+|x|}\,.$ [/mm] Als Funktion $m: [mm] \IR \to [/mm] (-1,1)$ ist
dann [mm] $m\,$ [/mm] bijektiv. (Das kann man leicht mit strenger Monotonie und
Stetigkeit begründen und weil [mm] $\lim_{x \to \pm \infty}m(x)=\pm 1\,.$) [/mm]

Damit ist leicht eine Bijektion $(-1,1) [mm] \to \IR$ [/mm] gefunden: [mm] $m^{-1}$ ($\not=1/m$(!!!)). [/mm]

Um nun eine Bijektion $(-1,1] [mm] \to \IR$ [/mm] zu finden, reicht es dann etwa, eine
Bijektion $(-1,1] [mm] \to [/mm] (-1,1) $ anzugeben (denn bedenke: Umkehrfunktionen
bijektiver Funktionen und auch Verknüpfungen bijektiver Funktionen sind
bijektiv - bzw. beweise das, wenn es unbekannt oder unklar ist!) - und
dazu hat wieschoo ja schon was gesagt...

P.S. Wenn Du magst, kannst Du ja auch mal versuchen, etwa eine
Bijektion $(-1,1] [mm] \to [/mm] [-1,1]$ anzugeben. Alles andere ist reine Bastelarbeit:
Eine Bijektion $(-1,1) [mm] \to [/mm] (a,b)$ anzugeben (sofern $a < [mm] b\,$) [/mm] ist "fast"
trivial...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de