www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Intervallschachtelung zeigen
Intervallschachtelung zeigen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallschachtelung zeigen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 14.11.2006
Autor: Planlos

Aufgabe
Sei 0<a<b. Man definiere induktiv [mm] a_{1}:= [/mm] a, [mm] b_{1}:= [/mm] b sowie [mm] a_{n+1} [/mm] := [mm] H(a_{n},b_{n}), b_{n+1}:= A(a_{n},b_{n}) [/mm] dabei ist H bzw. A das harmonische bzw. arithmetische Mittel.
Man zeige: [mm] [a_{n},b_{n}] [/mm] liefert eine Intervallschachtelung um G(a,b) = [mm] \wurzel{a\cdot b} [/mm] (G geometrisches Mittel).

Ich verstehe bei dieser Aufgabe so gut wie gar nichts, außer dass man sich am Anfang wohl das Intervall [a,b] anschaut. Wie aber soll mich das zur Intervallschachtelung führen??
Es wäre klasse, wenn ihr mir ein paar Denkanstöße geben könntet.

        
Bezug
Intervallschachtelung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 14.11.2006
Autor: Walde

hi Planlos,

genau, du startest mit [mm] [a_1;b_1] [/mm] und [mm] a_1=a [/mm] und [mm] b_1=b. [/mm]

Als nächstes nimmst du [mm] [a_2;b_2] [/mm] mit [mm] a_2=[/mm]  []harmonisches Mittel von [mm] a_1 [/mm] und [mm] b_2 [/mm] , d.h.

[mm] a_2=\bruch{2}{\bruch{1}{a_1}+\bruch{1}{b_1}} [/mm]

und [mm] b_2= [/mm] arithmetisches Mittel, d.h. [mm] b_2=\bruch{a_1+b_1}{2} [/mm]

als nächstes nimmst du [mm] [a_3;b_3] [/mm] mit [mm] a_3 [/mm] wieder dem harm. Mittel, diesmal von [mm] a_2 [/mm] und [mm] b_2 [/mm] , also [mm] a_3=\bruch{2}{\bruch{1}{a_2}+\bruch{1}{b_2}} [/mm] und so weiter.

Zeigen sollst du, dass sich die Intervallgrenzen von beiden Seiten immer mehr dem geometrischen Mittel [mm] (=\wurzel{a*b}) [/mm] von a und b nähern. Die Grenzen [mm] a_n [/mm] und [mm] b_n [/mm] sind ja zwei Zahlenfolgen, die womöglich beide [mm] \wurzel{a*b} [/mm] als Grenzwert haben, aber ich habs jetzt nicht weiter verfolgt, ist nur so ne Idee. Du müsstest wohl zeigen, dass die rechte Intervallgrenze immer kleiner wird, aber nie kleiner als [mm] (\wurzel{a*b}), [/mm] also quasi dagegen konvergiert (monoton und beschränkt, ich hoffe da klingelts bei dir ;-) ). Analog mit der linken Grenze.

Ich hoffe, das hilft dir weiter.

L G walde



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de