www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Inverse Cauchyfolgen
Inverse Cauchyfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Cauchyfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 22.05.2012
Autor: jack1975

Hallo zusammen,

ich möchte folgendes zeigen: Ist [mm] $(x_n)_n$ [/mm] eine Cauchyfolge in [mm] $\IQ$, [/mm] die keine Nullfolge ist, so ist [mm] $(x_n^{-1})_n$ [/mm] auch eine Cauchyfolge, wobei wir o.E. annehmen, dass alle [mm] $x_n \neq [/mm] 0$ sind. Einen Beweis dazu habe ich mir überlegt, aber ich muss irgendwo einen kleinen Fehler haben bzw. ich sehe nicht, wo ich benutzt habe dass [mm] $(x_n)_n$ [/mm] keine Nullfolge ist. Mein Beweis: Sei [mm] $\varepsilon [/mm] > 0$ gegeben und [mm] $N=N(\varepsilon) \in \IN$ [/mm] mit [mm] $\left| x_n - x_m \right| [/mm] < [mm] \varepsilon \cdot C^2$, [/mm] wobei $C [mm] \geq [/mm] 0$ mit [mm] $\left| x_n\right| \leq [/mm] C$ für alle $n [mm] \in \IN$ [/mm] (da jede Cauchyfolge beschränkt). Dann folgt für alle $n, m [mm] \geq [/mm] N$: [mm] $\left| \frac{1}{x_n} - \frac{1}{x_m}\right| [/mm] = [mm] \left| \frac{x_m - x_n}{x_nx_m}\right| \leq \frac{\varepsilon \cdot C^2}{C^2} [/mm] = [mm] \varepsilon$. [/mm]

Damit müsste die Folge der inversen Elemente ja eine Cauchyfolge sein, aber zum Beispiel [mm] $x_n [/mm] = 1/n$ erfüllt ja auch alle obigen Voraussetzungen -- bis auf keine Nullfolge zu sein -- weshalb die Folge der Inversen, also die Folge der natürlichen Zahlen ja auch keine Cauchyfolge darstellt. Kann mir jemand meinen Fehler zeigen bzw. die Lücke in der Argumentation stopfen?

Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Cauchyfolgen: Kehrwertungleichung
Status: (Antwort) fertig Status 
Datum: 23:54 Di 22.05.2012
Autor: Helbig


> Hallo zusammen,
>  
> ich möchte folgendes zeigen: Ist [mm](x_n)_n[/mm] eine Cauchyfolge
> in [mm]\IQ[/mm], die keine Nullfolge ist, so ist [mm](x_n^{-1})_n[/mm] auch
> eine Cauchyfolge, wobei wir o.E. annehmen, dass alle [mm]x_n \neq 0[/mm]
> sind. Einen Beweis dazu habe ich mir überlegt, aber ich
> muss irgendwo einen kleinen Fehler haben bzw. ich sehe
> nicht, wo ich benutzt habe dass [mm](x_n)_n[/mm] keine Nullfolge
> ist. Mein Beweis: Sei [mm]\varepsilon > 0[/mm] gegeben und
> [mm]N=N(\varepsilon) \in \IN[/mm] mit [mm]\left| x_n - x_m \right| < \varepsilon \cdot C^2[/mm],
> wobei [mm]C \geq 0[/mm] mit [mm]\left| x_n\right| \leq C[/mm] für alle [mm]n \in \IN[/mm]
> (da jede Cauchyfolge beschränkt). Dann folgt für alle [mm]n, m \geq N[/mm]:
> [mm]\left| \frac{1}{x_n} - \frac{1}{x_m}\right| = \left| \frac{x_m - x_n}{x_nx_m}\right| \leq \frac{\varepsilon \cdot C^2}{C^2} = \varepsilon[/mm].

Es gilt zwar [mm] $|x_m*x_n|\le C^2$, [/mm] aber daraus folgt nicht [mm] $\bruch [/mm] 1 [mm] {|x_m*x_n|} \le \bruch [/mm] 1 [mm] {C^2}$. [/mm] Genau hier brauchst Du, daß [mm] $(x_n)$ [/mm] keine Nullfolge ist!

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de