Inverse Dreiecksmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
Folgende Aufgabe:
Sei N := [mm] $\{A=(a_{\mu\nu}) \in \operatorname{Mat}(n, K) \;|\; a_{\mu\nu} = 0 \operatorname{fuer} \mu \ge \nu\}$ [/mm] die Menge der oberen Dreiecksmatrizen.
Sei $A [mm] \in [/mm] N$. Zeige, dass [mm] $E_n [/mm] - A$ invertierbar ist und gebe eine Formel für [mm] $(E_n [/mm] - [mm] A)^{-1}$.
[/mm]
Soweit, so gut. Die Matrix [mm] $E_n [/mm] - A$ müsste damit ungefähr so aussehen:
[mm] \pmat{ 1 & -a_{12} & \cdots & -a_{1n} \\ 0 & 1 & \cdots & -a_{2n} \\ \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & -a_{n-1n} \\ 0 & 0 & \cdots & 1 }
[/mm]
Die Invertierbarkeit ist mir eigentlich klar (offenbar ist der Rang der Matrix gerade n, was man einfach ablesen kann, da sie ja bereits Zeilenstufenform hat, also ist sie invertierbar). Als Formel vermute ich (dank eines Hinweises auf die geometrische Reihe):
[mm] $(E_n [/mm] - [mm] A)^{-1} [/mm] = [mm] E_n [/mm] + A + [mm] A^2 [/mm] + ... + [mm] A^{n-1}$
[/mm]
Anhand eines Beispiels scheint diese Formel auch zu stimmen, doch ich habe nicht die leiseste Ahnung, wie man das beweisen könnte...? Kann irgendjemand helfen?
Danke,
- Marcel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:01 Mi 05.01.2005 | Autor: | andreas |
hi Marcel
das kann man hier ganz einfach machen: nämlich aurechnen. berechnen doch mal, was [m] (E_n - A)*\sum_{k=0}^n A^k = (E_n - A)*(E_n + A + \hdots + A^{n-1}) [/m] ergibt. da wird ganz viel einmal mit "+" und einmal mit "-" auftreten. wenn du dann noch benutzt, dass $A$ nilpotent vom grad kleiner gleich $n$ ist, also dass [m] A^n = 0 [/m], dann ergälst du was?
grüße
andreas
|
|
|
|
|
Uhh, da hatte ich ja mal wieder ein mächtiges Brett vor'm Kopf. Die Beweise, die wir in den LinA-Vorlesungen derzeit besprechen, sind oft so lang und umständlich und für mich teilweise noch recht unverständlich, sodass ich hier wohl im Leben nicht darauf gekommen wäre, einfach mal *auszurechnen* ... ;)
Danke,
- Marcel
|
|
|
|