www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Inverse Dreiecksmatrizen
Inverse Dreiecksmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Dreiecksmatrizen: Frage
Status: (Frage) beantwortet Status 
Datum: 13:58 Mi 05.01.2005
Autor: freaKperfume

Hallo,

Folgende Aufgabe:
Sei N := [mm] $\{A=(a_{\mu\nu}) \in \operatorname{Mat}(n, K) \;|\; a_{\mu\nu} = 0 \operatorname{fuer} \mu \ge \nu\}$ [/mm] die Menge der oberen Dreiecksmatrizen.
Sei $A [mm] \in [/mm] N$. Zeige, dass [mm] $E_n [/mm] - A$ invertierbar ist und gebe eine Formel für [mm] $(E_n [/mm] - [mm] A)^{-1}$. [/mm]

Soweit, so gut. Die Matrix [mm] $E_n [/mm] - A$ müsste damit ungefähr so aussehen:

[mm] \pmat{ 1 & -a_{12} & \cdots & -a_{1n} \\ 0 & 1 & \cdots & -a_{2n} \\ \ddots & \ddots & & \vdots \\ 0 & 0 & \cdots & -a_{n-1n} \\ 0 & 0 & \cdots & 1 } [/mm]

Die Invertierbarkeit ist mir eigentlich klar (offenbar ist der Rang der Matrix gerade n, was man einfach ablesen kann, da sie ja bereits Zeilenstufenform hat, also ist sie invertierbar). Als Formel vermute ich (dank eines Hinweises auf die geometrische Reihe):
[mm] $(E_n [/mm] - [mm] A)^{-1} [/mm] = [mm] E_n [/mm] + A + [mm] A^2 [/mm] + ... + [mm] A^{n-1}$ [/mm]

Anhand eines Beispiels scheint diese Formel auch zu stimmen, doch ich habe nicht die leiseste Ahnung, wie man das beweisen könnte...? Kann irgendjemand helfen?

Danke,
- Marcel

        
Bezug
Inverse Dreiecksmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 05.01.2005
Autor: andreas

hi Marcel

das kann man hier ganz einfach machen: nämlich aurechnen. berechnen doch mal, was [m] (E_n - A)*\sum_{k=0}^n A^k = (E_n - A)*(E_n + A + \hdots + A^{n-1}) [/m] ergibt. da wird ganz viel einmal mit "+" und einmal mit "-" auftreten. wenn du dann noch benutzt, dass $A$ nilpotent vom grad kleiner gleich $n$ ist, also dass [m] A^n = 0 [/m], dann ergälst du was?

grüße
andreas

Bezug
                
Bezug
Inverse Dreiecksmatrizen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Mi 05.01.2005
Autor: freaKperfume

Uhh, da hatte ich ja mal wieder ein mächtiges Brett vor'm Kopf. Die Beweise, die wir in den LinA-Vorlesungen derzeit besprechen, sind oft so lang und umständlich und für mich teilweise noch recht unverständlich, sodass ich hier wohl im Leben nicht darauf gekommen wäre, einfach mal *auszurechnen* ... ;)

Danke,
- Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de