www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Inverse Funktion
Inverse Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 So 09.10.2005
Autor: Jean

Hier habe ich noch ein Problem. Die Aufgabe ist erstmal die inverse Funktion  [mm] \bruch{x+1}{2*x-3} [/mm] in ein axensystem einzufügen, so weit kein Problem, aber dann soll ich noch die entsprechende  [mm] (f)^{-1}-Funktion [/mm] dazu geben.
Ich weiß dass die Inverse Funktion von z.B. y = 2*x-3 gleich  [mm] \bruch{x+3}{2} [/mm] ist. Wenn ich aber jetzt versuche die Funktion der Aufgabe auch nach y zu befreien, dann annuliere ich y oder es kommt sonst irgent ein unsinn dabei raus. Hier ein Beispiel:
y = [mm] \bruch{x+1}{2*x-3} [/mm]  
[mm] \gdw [/mm] y*(2*x-3) = x+1
wenn ich jetzt noch durch x teile, habe ich
[mm] \gdw \bruch{y}{x}*(2*x-3) [/mm] = 1
[mm] \gdq [/mm] 2*y - [mm] \bruch{3y}{x} [/mm] = 1
und jetzt?
Danke schon mal
Jean
Ach, und ich bitte eventuell ein wenig seltsame formulierungen (ich weiß nicht ob sie es wirklich sind) zu entschuldigen. Ich mache die Mathe auf Französisch und Übersetzte halt manchmal 1:1.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Inverse Funktion: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 21:47 So 09.10.2005
Autor: Loddar

Hallo Jean,

[willkommenmr] !!


> Hier ein Beispiel:
> y = [mm]\bruch{x+1}{2*x-3}[/mm]  

> [mm]\gdw[/mm] y*(2*x-3) = x+1

Soweit richtig [ok] !

Der weitere Schritt ist nicht so gut ;-) ...


Multiplizieren wir doch mal zunächst die Klammer auf der linken Seite aus und bringen alle Terme mit $x_$ auf die eine Seite der Gleichung und den Rest auf die andere:

$2y*x-3y \ = \ x+1$

$2y*x - x \ = \ 3y+1$


Nun klammern wir links $x_$ aus:

$x*(2y - 1) \ = \ 3y+1$


Ist der letzte Schritt nun klar?


Gruß
Loddar


Bezug
                
Bezug
Inverse Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 So 09.10.2005
Autor: Jean

Danke.
Deine Antwort hat mir sehr geholfen.
Ist logisch, nachvollziehbar und ich habe schon ordentlich angefangen mich über mich selbst zu ärgern.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de