www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Inverse Lineare Abbildung
Inverse Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Lineare Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:45 Fr 12.12.2014
Autor: trinki

Aufgabe
[mm] T:R^2^2\vmat{ a & b \\ c & d }−→∣→−R\le3[x] [/mm]
[mm] 2ax^3+6bx^2+14cx+9d. [/mm]


Die inverse Abbildung T−1 bildet vom R≤3[x] auf den R2,2 ab.
Berechnen Sie T−1(kx3+lx2+mx+n) wobei k,l,m,n die Koeffizienten des betrachteten Polynoms sind.

Hey ich hab nen Problem beim berechnen der Aufgabe.
Und zwar hab ich ne anleitung wie es gehen soll , welche lautet:

[mm] kx^3+lx^2+mx+n [/mm]  = T ( [mm] \vmat{ \alpha & \beta \\ \gamma & \delta } [/mm] )

so jetzt erhalte ich :

2 [mm] \alpha x^3 [/mm]  +6 [mm] \beta x^2 [/mm] + 14 [mm] \gamma [/mm] x + 9 [mm] \delta [/mm]

so nun soll man durch nen koeffizienten vergleich zum Lgs kommen und das lösen und schon hat man T^-1 die 4 werte zum eintragen in die 2x2 matritze.

warschinelich ne einfache sache aber ich stehe gerade auf dem schlauch vlt könnt ihr mir helfen . danke schonmal im vorraus .

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Sa 13.12.2014
Autor: angela.h.b.


> [mm]T:R^2^2\vmat{ a & b \\ c & d }−→∣→−R\le3[x][/mm]

>

> [mm]2ax^3+6bx^2+14cx+9d.[/mm]

Hallo,

[willkommenmr].

Wenn ich mal ein wenig Fantasie bemühe, geht es um diese Abbildung:

[mm] T:\IR^{2,2}\to \IR_{\le 3}[x] [/mm] mit

[mm] T(\pmat{ a & b \\ c & d }):=2ax^3+6bx^2+14cx+9d. [/mm]

Gesucht ist nun die inverse Abbildung [mm] T^{-1}. [/mm]
>
>

> Die inverse Abbildung T−1 bildet vom R≤3[x] auf den
> R2,2 ab.

Und zwar so:

[mm] T^{-1}(kx^3+lx^2+mx+n)=\pmat{ \alpha & \beta \\ \gamma & \delta }, [/mm]
wobei [mm] \alpha,\beta, \gamma, \delta [/mm] so sind, daß

[mm] T(\pmat{ \alpha & \beta \\ \gamma & \delta })=kx^3+lx^2+mx+n. [/mm]

Daraus ergibt sich die Dir vorliegende Anleitung:

> Berechnen Sie T−1(kx3+lx2+mx+n) wobei k,l,m,n die
> Koeffizienten des betrachteten Polynoms sind.
> Hey ich hab nen Problem beim berechnen der Aufgabe.
> Und zwar hab ich ne anleitung wie es gehen soll , welche
> lautet:

>

> [mm]kx^3+lx^2+mx+n[/mm] = T ( [mm]\vmat{ \alpha & \beta \\ \gamma & \delta }[/mm]
> )

>

> so jetzt erhalte ich :

>

> 2 [mm]\alpha x^3[/mm] +6 [mm]\beta x^2[/mm] + 14 [mm]\gamma[/mm] x + 9 [mm]\delta[/mm]

Nein. Du erhältst

[mm] \red{kx^3+lx^2+mx+n=}2[/mm]  [mm]\alpha x^3[/mm] +6 [mm]\beta x^2[/mm] + 14 [mm]\gamma[/mm] x + 9 [mm]\delta[/mm].

2 Polynome sind gleich, wenn die Koeffizienten übereinstimmen.
Also muß sein:

[mm] k=2\alpha [/mm]
[mm] l=6\beta [/mm]
[mm] m=14\gamma [/mm]
[mm] n=9\delta [/mm]


>

> so nun soll man durch nen koeffizienten vergleich zum Lgs
> kommen und das lösen und schon hat man T^-1 die 4 werte
> zum eintragen in die 2x2 matritze.

Matrix heißt das Ding. "Matrize" ist was anderes.
Ansonsten: ja.

LG Angela
>

> warschinelich ne einfache sache aber ich stehe gerade auf
> dem schlauch vlt könnt ihr mir helfen . danke schonmal im
> vorraus .

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Inverse Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 13.12.2014
Autor: trinki

hallo , danke schonmal für deine hilfe.

okay dann müsste die lösung

= [mm] \pmat{ k/2 & l/6 \\ m/14 & n/9 } [/mm]

sein oder ?.

Bezug
                        
Bezug
Inverse Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 13.12.2014
Autor: angela.h.b.


> hallo , danke schonmal für deine hilfe.

>

> okay dann müsste die lösung

>

> = [mm]\pmat{ k/2 & l/6 \\ m/14 & n/9 }[/mm]

>

> sein oder ?.

Hallo,

ja.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de