www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Inverse Matrix
Inverse Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Di 03.04.2012
Autor: racy90

Hallo,

ich bräuchte bei einer Aufgabe bitte eure Hilfe.

Geg. ist folgende Matrix  [mm] A=\pmat{\wurzel{1-ab} & a \\ b & -\wurzel{1-ab} } [/mm] a,b reell mit 1-ab >0

Ich soll nun bestätigen das A=A^-1  und was ist [mm] A^n [/mm] für n gerade bzw für n ungerade?

Zum ersten bin ich leider ratlos ...

Beim 2.Punkt fällt mir nur ein das [mm] A^n= T*diag(\lambda_1^n,\lambda_2^n,...,\lambda_n^n)*T^-1 [/mm]

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Di 03.04.2012
Autor: Harris

Na ja... um zu zeigen, dass

[mm] A=A^{-1} [/mm]
kann man zeigen, dass
[mm] $A\cdot [/mm] A=E$
gilt. Wenn du das dann gezeigt hast, ist es nicht mehr so schwer...

[mm] A^1=A [/mm]
[mm] A^2=E [/mm]
[mm] A^3=A... [/mm]

Bezug
                
Bezug
Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 03.04.2012
Autor: racy90

aber  was sagt mir das dann wenn ich A*A mache das ist [mm] \pmat{ (ab-ab+1) & 0\\ 0 & (ab-ab+1) } [/mm]

das ist ja nicht A^-1 oder?

Wenn ich nun ein paar mal potenziere fällt auf

bei n gerade gilt [mm] \pmat{ (ab-ab+1)^{n/2} & 0\\ 0 & (ab-ab+1)^{n/2} } [/mm]


Bezug
                        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Di 03.04.2012
Autor: ullim

Hi,

> aber  was sagt mir das dann wenn ich A*A mache das ist
> [mm]\pmat{ (ab-ab+1) & 0\\ 0 & (ab-ab+1) }[/mm]


Aber das Ergebnis von A*A ist doch dann die Einheitsmatrix und damit ist A = [mm] A^{-1} [/mm]

Wenn also gilt A*A=E dann gilt

[mm] A^n=\begin{cases} E, & \mbox{für } n \mbox{ gerade} \\ A, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

wobei E die Einheitsmatrix ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de