www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Inverse Matrix bestimmen
Inverse Matrix bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Do 14.02.2008
Autor: ElDennito

Aufgabe
Für welche Parameter [mm] \lambda\in\IR [/mm] ist folgende Matrix invertierbar?

[mm] A=\pmat{ 1 & 2 \\ 3 & \lambda } [/mm]

Im Falle der Invertierbarkeit von A bestimmen Sie in Abhängigkeit des Parameters [mm] \lambda [/mm] die zu A inverse Matrix [mm] A^{-1} [/mm] .

Hallo,

jede Matrix ist dann invertierbar, wenn die Determinante ungleich 0 ist.  Hier ist die Determinante = [mm] (1*\lambda)-2*3=\lambda-6. [/mm]

Schön und gut, aber wie errechne ich die inverse Matrix zur Matrix A? Mit dem Gauß-Verfahren. Aber mich stört das [mm] \lambda [/mm] . Ich muss es ja schaffen, dass die 2 eine Null wird. Wie gelingt mir das? Könnt ihr mir einen Tipp geben? Wäre euch dankbar. Es geht um meinen Schein... ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 14.02.2008
Autor: Steffi21

Hallo, gebe aber noch an, für [mm] \lambda\not=6, [/mm] denn für [mm] \lambda=6 [/mm] wird ja die Determinante zu Null,

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 3 & \lambda & 0 & 1} [/mm]

schreibe die Einheitsmatrix dahinter, jetzt durch Zeilenumformungen die Einheitsmatrix nach links bringen, dann fertig

Steffi

Bezug
                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Do 14.02.2008
Autor: ElDennito

Vielen Dank für die schnelle Antwort.

Aber die Einheitsmatrix links hinzubekommen, ist ja gerade mein Problem.

A= 1 2
     3 Lambda

Irgendwann steht dann bei mir:

A = 1   2                             1  0
  0  Lambda-6                  -3 1

Was mach ich, damit die 2 eine Null wird. Das Lambda-6 stört mich. Danke schonmal.

Bezug
                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 14.02.2008
Autor: Marcel

Hallo,

ich weiß gar nicht, was Du da rechnest. Du wirst hier 4 Gleichungen in 4 Variablen erhalten, dieses Gleichungssystem wird für [mm] $\lambda \not=6$ [/mm] lösbar sein (übrigens ist eine (quadratische) Matrix GENAU DANN invertierbar, wenn die Determinante nicht verschwindet).

Wenn Du also

[mm] $A=\pmat{ 1 & 2 \\ 3 & \lambda }$ [/mm] mit [mm] $\lambda \not=6$ [/mm]

gegeben hast und

[mm] $A^{-1}=\pmat{a & b\\ c & d}$ [/mm]

suchst, so muss [mm] $A*A^{-1}=\pmat{ 1 & 2 \\ 3 & \lambda }*\pmat{a & b\\ c & d}=\pmat{1 & 0 \\ 0 & 1}$ [/mm]

gelten, was (für beliebiges, aber festes [mm] $\lambda \in \IR \backslash\{6\}$) [/mm] die vier Gleichungen in den vier Variablen $a,b,c,d$:

(I)    $a+2c=1$

(II)   $b+2d=0$

(III) [mm] $3a+\lambda*c=0$ [/mm] (hier erkennt man, wenn man mit (I) vergleicht,
übrigens auch, warum [mm] $\lambda \not=6$ [/mm] sein sollte, wenn [mm] $A^{-1}$ [/mm] existiert)

(IV) [mm] $3b+\lambda [/mm] d=1$

zur Folge hat, und dieses Gleichungssystem ist (genau) für [mm] $\lambda \not=6$ [/mm] in eindeutiger Weise lösbar.

Wie gesagt, betrachte [mm] $\lambda \not=6$ [/mm] als fest und löse diese vier Gleichungen in den vier Varibalen $a,b,c,d$, um $a$, $b$, $c$ und $d$ zu bestimmen.

Beachten solltest Du nämlich:
Es ist [mm] $A=A(\lambda)$, [/mm] also wird auch [mm] $A^{-1}$ [/mm] von [mm] $\lambda$ [/mm] abhängig sein (und überhaupt existent genau dann, wenn [mm] $\lambda \not=6$). [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Do 14.02.2008
Autor: ElDennito

Sry, aber das verstehe ich nicht. Ich soll jetzt a,b,c,d herausbekommen. Aber wie kommst du auf die Gleichungen I-IV? Und wenn man die Gleichungen hat: Wie errechne ich damit a-d?

Ich dachte, es sei ganz schnell zu ermitteln? Siehe Steffi oben.

Danke schonmal.

Bezug
                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Do 14.02.2008
Autor: Steffi21

Hallo wir hatten ja

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 3 & \lambda & 0 & 1 } [/mm]

neue II. Zeile bilden: 3*I-II

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 0 & 6-\lambda & 3 & -1 } [/mm]

neue I. Zeile bilden: [mm] (6-\lambda)*I-2*II [/mm]

[mm] \pmat{6-\lambda & 0 & -\lambda & 2 \\ 0 & 6-\lambda & 3 & -1 } [/mm]

jetzt 1. Zeile/ 1. Spalte muß eine 1 stehen
jetzt 2. Zeile/ 2. Spalte muß eine 1 stehen

also dividiere beide Zeilen durch ....

dann steht links die Einheitsmatrix und rechts die inverse Matrix

Steffi


Bezug
                                                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Do 14.02.2008
Autor: ElDennito

Danke!

Nur zur Kontrolle: Was kommt dann da raus?

Bezug
                                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 14.02.2008
Autor: Steffi21

Hallo, du schaffst den letzten Schritt:

Division durch [mm] 6-\lambda [/mm]

in der 1. Zeile:

[mm] \bruch{6-\lambda}{6-\lambda}= [/mm]

[mm] \bruch{0}{6-\lambda}= [/mm]

[mm] \bruch{-\lambda}{6-\lambda} [/mm]

[mm] \bruch{2}{6-\lambda} [/mm]

in der 2. Zeile:

[mm] \bruch{0}{6-\lambda}= [/mm]

[mm] \bruch{6-\lambda}{6-\lambda}= [/mm]

[mm] \bruch{3}{6-\lambda} [/mm]

[mm] \bruch{-1}{6-\lambda} [/mm]

Steffi



Bezug
                                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Do 14.02.2008
Autor: Marcel

Hallo,

damit Du meinen Rechenweg auch nachvollziehen kannst:

Die 4 Gleichungen

(I)    $a+2c=1$

(II)   $b+2d=0$

(III) $ [mm] 3a+\lambda\cdot{}c=0 [/mm] $

(IV) $ [mm] 3b+\lambda [/mm] d=1 $

entstanden aus der Forderung [mm] $A*A^{-1}=\pmat{1 & 0 \\ 0 & 1}$, [/mm] wobei wir $a,b,c,d$ gesucht haben, um [mm] $A^{-1}$ [/mm] angeben zu können.

(Du weißt doch sicherlich, wie man Matrizen miteinander multipliziert, da solltest Du eigentlich sehen, wie diese 4 Gleichungen entstanden sind?!)

Aus $3*$(I)-(III) folgt [mm] $(6-\lambda)*c=3$, [/mm] also [mm] $c=\frac{3}{6-\lambda}$ [/mm] und damit [mm] $a=1-\frac{6}{6-\lambda}=\frac{-\lambda}{6-\lambda}$. [/mm]

$3*$(II)-(IV) liefert [mm] $(6-\lambda)d=-1$ [/mm] und damit [mm] $d=\frac{-1}{6-\lambda}$ [/mm] und damit [mm] $b=-2d=\frac{2}{6-\lambda}$, [/mm] also insgesamt

[mm] $A^{-1}=\pmat{a & b\\ c & d}=\frac{1}{6-\lambda}\pmat{-\lambda & 2\\ 3 & -1 }$ [/mm]

Zur Kontrolle:
[mm] $\pmat{1 & 2 \\ 3 & \lambda}*\pmat{-\lambda & 2\\ 3 & -1 }=\pmat{-\lambda+6 & 0 \\0 & 6-\lambda}=(6-\lambda)*\pmat{1&0\\0&1}$ [/mm]

P.S.:
Es kann ja sein, dass Dir Steffis Weg besser gefällt, weil ihr dieses Schema so gelernt habt, aber diese Rechnung hier solltest Du eigentlich nachvollziehen können, denn es mag ja gut sein, wenn man nach einem Schema zu rechnen weiß, aber ich finde es um einiges wichtiger, zu wissen, was man da rechnet und warum man das so rechnen darf, dann kann man sich bei "großen" Rechnungen immer noch überlegen, ob man nicht selbst ein Schema entwickelt oder ggf. nachschlägt, wie man das "übersichtlicher" lösen kann (und hier gibt es offensichtliche Zusammenhänge zwischen meiner Rechnung und Steffis, wäre auch schlimm, wenn's nicht so wäre ;-)).
Natürlich gilt das obige Ergebnis nur für [mm] $\lambda \not=6$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de