www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Inverse berechnen
Inverse berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse berechnen: Ergebnisvergleich
Status: (Frage) beantwortet Status 
Datum: 08:56 Di 02.12.2008
Autor: Anaximander

Aufgabe
[mm] \begin{bmatrix} 1 & \ 0 & 3 & 0 \\ \ 0 & 2 & 0 & 4 \ & \ \\ 5 & 0 \ & 7 & 0 \\ \ 0 & 6 & 0 & 8 \end{bmatrix} [/mm]  

Bitte gebt mir die Inverse als Ergebnis an, denn ich habe einige Brüche in der Inversen und die kann ich nur schlecht mit dem Formelsystem darstellen.

Herzlichen Dank für jede Hilfe!
Diese Aufgabe habe ich auch bei einem anderen Forum gestellt- onlinemathe, Matritzenrechnung.

        
Bezug
Inverse berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:08 Di 02.12.2008
Autor: angela.h.b.

Hallo,

klick mal auf Quelltext und schau Dir an, wie man hier Brüche darstellen kann:

[mm] \bruch{123}{456}. [/mm]

\ bruch  und dann in geschweifte Klammern jeweils den Zähler und Nenner.

Das Berechnen der inversen Matrix möchte ich Dir nicht abnehmen, schauen ob's richtig ist, würde bestimmt jemand. Du kannst natürlich auch selbst die Probe machen, es muß bei Multiplikation doch die Einheitsmatrix herauskommen.

Gruß v. Angela




Bezug
                
Bezug
Inverse berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Di 02.12.2008
Autor: Anaximander

Aufgabe
[mm] \begin{bmatrix} \bruch{-7}{8} & \ 0 & \bruch{3}{8} & 0\\ \ 0 & \ -1 & \ 0 & \bruch{2}{4} \\ \bruch{5}{8} & \ 0 & \bruch{-1}{8} & 0\\ \ 0 & \bruch{3}{4} & 0 & \bruch{-1}{4} \end{bmatrix} [/mm]  

Bei der Matritzenmultiplikation habe ich nicht die Einheitsmatrix bekommen.
Wo ist mein Fehler?
Ich rechnete:
I.: I. * (-7) + III. * 3
II.: II. : 2
III.: I. * (-5) + III.
IV.: II. * (-3) + IV.
I.: I. * 1:8
II.: II. + IV. * 2:4
III.: III. * (-1:8)
IV.: IV. * (-1:4)    ;

Danke für jede Hilfe!

Bezug
                        
Bezug
Inverse berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Di 02.12.2008
Autor: angela.h.b.

Hallo,

ich sehe bei Deier Matrix nichts Verkehrtes. Sie ist richtig.

Gruß v. Angela

Bezug
        
Bezug
Inverse berechnen: Tool zur Kontrolle
Status: (Antwort) fertig Status 
Datum: 09:13 Di 02.12.2008
Autor: Loddar

Hallo Anaximander!


Sieh mal []hier. Da gibt es ein Tool zur Berechnung von Matrix-Inversen.


Gruß
Loddar


Bezug
        
Bezug
Inverse berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Di 02.12.2008
Autor: Al-Chwarizmi

Du kannst die Matrix ganz gut darstellen, wenn
du den Bruch [mm] \bruch{1}{\mbox{Hauptnenner}} [/mm] aus der Matrix
ausklammerst. Das sieht dann bei deiner Inversen
so aus:


        $\ [mm] A^{-1}=\bruch{1}{8}*\pmat{-7&0&3&0\\?&?&?&?\\?&?&?&?\\?&?&?&?}$ [/mm]





Bezug
                
Bezug
Inverse berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Di 02.12.2008
Autor: Anaximander

Danke für eure klasse Hilfe!
Die erste Zeile habe ich auch so als Ergebnis. Das mit dem Tool werde ich gleich ausprobieren. Warum kam aber gerade nicht die Einheitsmatrix bei meiner Matritzenmultiplikation heraus (Zeile * Spalte)?
Bitte erklärt mir das!

Dankeschön!

Bezug
                        
Bezug
Inverse berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Di 02.12.2008
Autor: Al-Chwarizmi


> Danke für eure klasse Hilfe!
>  Die erste Zeile habe ich auch so als Ergebnis. Das mit dem
> Tool werde ich gleich ausprobieren. Warum kam aber gerade
> nicht die Einheitsmatrix bei meiner Matritzenmultiplikation
> heraus (Zeile * Spalte)?
>  Bitte erklärt mir das!
>  
> Dankeschön!

Wenn du z.B.  [mm] A^{-1}*A [/mm] berechnest, hast du:

      $\ [mm] A^{-1}*A\ =\pmat{\blue{-\bruch{7}{8}&\blue{0}&\blue{\bruch{3}{8}}&\blue{0}}\\?&?&?&?\\?&?&?&?\\?&?&?&?}*\pmat{1&0&\green{3}&0\\0&2&\green{0}&4\\5&0&\green{7}&0\\0&6&\green{0}&8}=\pmat{1&0&\red{0}&0\\?&?&?&?\\?&?&?&?\\?&?&?&?}$ [/mm]

Die rote Null, also das Element am Kreuzungspunkt
der ersten Zeile mit der dritten Spalte der Produkt-
matrix entsteht als Skalarprodukt der ersten
Zeile von
  [mm] $\blue{A^{-1}}$ [/mm] mit der dritten Spalte von A:

      $\ [mm] -\bruch{7}{8}*3+0*0+\bruch{3}{8}*7+0*0\ [/mm] =\ [mm] -\bruch{21}{8}+\bruch{21}{8}\ [/mm] =\ 0$


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de