www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Inverse berechnen
Inverse berechnen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Fr 20.03.2009
Autor: KnockDown

Hi,

ich weiß leider nicht mehr genau wie ich die inverse einer Matrix berechne. Ich weiß noch, dass es noch bei quadratischen geht und dass man der Matrix die man invertieren möchte eine andere gegenüberstellt.

Nehmen wir mal an ich wollte folgende Matrix invertieren:

[mm] \pmat{ 5 & 8 \\ 3 & 4 } [/mm]

Wie gehe ich dann nochmal vor?


Über Hilfe würde ich mich freuen.!




Grüße

        
Bezug
Inverse berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 20.03.2009
Autor: VornameName

Hallo KnockDown,

> Nehmen wir mal an ich wollte folgende Matrix invertieren:
>  
> [mm]\pmat{ 5 & 8 \\ 3 & 4 }[/mm]
>  
> Wie gehe ich dann nochmal vor?

Wende den []Gauss-Jordan-Algorithmus auf folgendes Gleichungssystem an: [mm]\left(\begin{smallmatrix}5 & 8 & 1&0\\ 3 & 4 &0&1\end{smallmatrix}\right)[/mm]. Dann ist die "rechte Teilmatrix", die du erhälst, die Inverse.

Gruß V.N.

Bezug
                
Bezug
Inverse berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Fr 20.03.2009
Autor: KnockDown

Hi,

danke für den Link und die Erklärung!


Grüße

Bezug
        
Bezug
Inverse berechnen: inverse
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Fr 20.03.2009
Autor: Melanzane

also wenn du die inverse berechnest dann hängst du hinter deiner matrix eine einheitsmatrix dran und formst die rechte matrix zu einer einheitsmatrix um gleichzeitig wendest du alle umformungen  auch auf die einheitsmatrix, di du angehängt hast an. wenn du auf der linken seite die einheitsmatrix hast, hast du auf der rechten seite die inverse dazu also:
linke matrix:  einheitsmatrix: nach umformungen:  die letzte matrix ist somit       die inverse
3 1                    1 0                        1 0    1/3 2/3
0 1                    0 1                        0 1    0    1

Bezug
                
Bezug
Inverse berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Fr 20.03.2009
Autor: KnockDown

Hi,

vielen Dank für das vorrechnen!


Das werde ich gleich mal ausprobieren!


Grüße

Bezug
        
Bezug
Inverse berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 20.03.2009
Autor: schachuzipus

Hallo Thomas,

das in den anderen Antworten beschreibene Verfahren klappt generell für invertierbare Matrizen.

Für [mm] $2\times [/mm] 2$-Matrizen gibt's eine "spezielle" Formel, mit der die Berechnung ganz schnell geht:

[mm] $A=\pmat{a&b\\c&d}\Rightarrow A^{-1}=\frac{1}{det(A)}\cdot{}\pmat{d&-b\\-c&a}=\frac{1}{ad-bc}\cdot{}\pmat{d&-b\\-c&a}$ [/mm]

LG

schachuzipus

Bezug
                
Bezug
Inverse berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Fr 20.03.2009
Autor: KnockDown

Hi vielen Dank für deine Antwort,

gibt es diesen Trick auch noch für 6x6 oder 5x5 Matrizen?


Viele Grüße

Bezug
                        
Bezug
Inverse berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 20.03.2009
Autor: pelzig

Ja, aber diese Formel für größere Matrizen direkt auszurechnen wird sehr kompliziert. Allein um die Determinante auszurechnen, muss man $n!$ Summanden addieren.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de