Inverse der Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:48 Mo 13.12.2004 | Autor: | Nadja |
Hi
Kann mir jemand vielleicht bei der folgenden Aufabe helfen.
1) Bestimme ( für a [mm] \in [/mm] K und n [mm] \in [/mm] N beliebig ) die Inverse der Matrix
[mm] \pmat{ 1 & a & a^2 & .... & a^n \\ 0 & 1 & a & ... & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 } [/mm] .
2) Bestimme die Inverse der (r+s)x(r+s) - Matrix
[mm] \pmat{ I_r & 0 \\ a & I_s } [/mm]
wobei a [mm] \in [/mm] M(s*r; K)
Danke
nadja
Ich habe diese Aufgabe in keinen anderen Forum gestellt.
|
|
|
|
Halli hallo!
> Kann mir jemand vielleicht bei der folgenden Aufabe
> helfen.
Ich wills probieren
> 1) Bestimme ( für a [mm]\in[/mm] K und n [mm]\in[/mm] N beliebig ) die
> Inverse der Matrix
> [mm]\pmat{ 1 & a & a^2 & .... & a^n \\ 0 & 1 & a & ... & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 }[/mm]
> .
Ich hab mir mal erlaubt deine Matrix zu verbessern (du hattest dich etwas bei den Exponenten der a's vertan)
ok, also die Inverse einer Matrix berechnet man ja, indem man die Matrix in die EInheitsmatrix überführt und die gleichen Umformungen auf die EInheitsmatrix anwendet, bei uns wär das also wie folgt
[mm] \vmat{ 1 & a & a^2 & .... & a^{n-1} & a^n \\ 0 & 1 & a & ... & a^{n-2} & a^{n-1} \\ 0 & 0 & 1 & ... & a^{n-3} & a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 1 & a\\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & 0 & 0 \\ 0 & 1 & 0 & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 1 & a \\ 0 & 0 & 0 & ... & 0 & 1 }
[/mm]
Jetzt ziehen wir von der ersten [mm] a^{n}-mal [/mm] die letzte Zeile ab, von der zweiten [mm] a^{n-1}-mal [/mm] die letzte von der zweiten und so weiter, also
[mm] \vmat{ 1 & a & a^2 & .... & a^{n-1} & 0 \\ 0 & 1 & a & ... & a^{n-2} & 0 \\ 0 & 0 & 1 & ... & a^{n-3} & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & 0 & -a^n \\ 0 & 1 & 0 & ... & 0 & -a^{n-1} \\ 0 & 0 & 1 & ... & 0 & -a^{n-2} \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 }
[/mm]
Jetzt ziehen wir [mm] a^{n-1}-mal [/mm] die vorletzte Zeile von der ersten ab, [mm] a^{n-2}-mal [/mm] die vorletzte von der zweiten und so weiter. Dabei passiert bei der letzten Spalte folgendes:
1.Spalte: [mm] a^{n}-a*a^{n-1}=0
[/mm]
2.SPalte: [mm] a^{n-1}+a*a^{n-2}=0
[/mm]
..., also erhalten wir:
[mm] \vmat{ 1 & a & a^2 & .... & 0 & 0 \\ 0 & 1 & a & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 } \vmat{ 1 & 0 & 0 & .... & -a^{n-1} & 0 \\ 0 & 1 & 0 & ... & -a^{n-2} & 0 \\ 0 & 0 & 1 & ... & -a^{n-3} & 0 \\ ..... \\ 0 & 0 & 0 & ... & 0 & 1 }
[/mm]
und so weiter und so fort, am ende hast du dann
[mm] A^{-1}=\pmat{ 1 & -a & 0 & .... & 0 & 0 \\ 0 & 1 & -a & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ..... \\ 0 & 0 & 0 & ... & 1 & -a \\ 0 & 0 & 0 & ... & 0 & 1 }
[/mm]
Müßte eigentlich stimmen, zumindest ergab mein nachrechnen dass es stimmt
> 2) Bestimme die Inverse der (r+s)x(r+s) - Matrix
>
> [mm]\pmat{ I_r & 0 \\ a & I_s }[/mm]
> wobei a [mm]\in[/mm] M(s*r; K)
Hier verfährst du eigentlich analog
[mm] \vmat{ 1 & 0 & 0 & .... & 0 & 0 \\ a & 1 & 0 & ... & 0 & 0 \\ a & a & 1 & ... & 0 & 0 \\ ... \\ a & a & a & ... & a & 1}
[/mm]
Nur diesmal fängst du von oben an, bzw. Ziehst die erste Zeile a-mal von der letzten, a-mal von der vorletzten usw. ab!
Wenn du Probleme dabei hast meld dich einfach nochmal, und schreib am besten auch wo du hängst!
Liebe Grüße
Ulrike
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:02 Do 16.12.2004 | Autor: | Chlors |
Hi,
kannst du mir erklären, wie du beim zweiten Teil von der angegeben Matrix zur letzten Matrix kommt, die man dann auf Inverse untersuchen kann??
Liebe Grüße, Conny.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Do 16.12.2004 | Autor: | Pommes |
Die angegebene Matrix ist ja nur die Blockdarstellung einer größeren Matrix. [mm] I_{r} [/mm] und [mm] I_{s} [/mm] sind die Einheitsmatrizen mit r bzw. s Spalten, 0 ist natürlich die Nullmatrix und a ist eine s [mm] \times [/mm] r Matrix. Die eigentliche Matrix sieht dann so aus:
[mm] \vmat{ 1 & 0 & ... & 0 & 0 & ... & ... & 0 \\ 0 & 1 & 0 & ... & ... & ... & ... & ... \\ ... & ... & ... & 0 & ... & ... & ... & ... \\ 0 & ... & ... & 1 & 0 & ... & ... & 0 \\ a_{11} & a_{12} & ... & a_{1r} & 1 & 0 & ... & 0 \\ a_{21} & ... & ... & ... & 0 & 1 & ... & ... \\ ... & ... & ... & ... & ... & ... & ... & 0 \\ a_{s1} & ... & ... & a_{sr} & 0 & ... & 0 & 1}
[/mm]
Diese Matrix ist dann eine r+s [mm] \times [/mm] r+s Matrix
Dann multiplizierst du immer eine der ersten Zeilen mit dem entprechenden a und subtrahierst die, so dass da Nullen entstehen etc.
|
|
|
|