www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Inverse einer 4x4- Matrix
Inverse einer 4x4- Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse einer 4x4- Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 So 22.04.2007
Autor: hana_schwiem

Aufgabe
Bestimme die Inverse zu A mit Hilfe der komplementären (adjunkten) Matrix Ã.
A=[mm]\begin{pmatrix} 4 & -2 & -1 & 0 \\ 0 & 3 & -1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 2 & 4 \end{pmatrix}[/mm]

Hallo Alle zusammen!

Dies ist mein erster Beitrag und ich bin etwas aufgeregt :)

Bisheriger Lösungsansatz:
Ich weiss, ich berechne die Inverse mit Hilfe der Adjunkten oder auch komplementären Matrix.

[mm]A^{-1} = \bruch{adj(A)}{det(A)}[/mm]
s.h. auch: []http://de.wikipedia.org/wiki/Komplementäre_Matrix/

Die dortige Formel (die ich i.ü. sogar verständlich finde :) ) für die Berechnung der Adjunkten ist allerdings nur für 3X3- Matrizen geeignet.

Ich würde also zunächst mal aus der Matrix eine Dreiecksmatrix machen (2x Zeile 2 + Zeile 4), um dann die Determinante einfach über das Produkt der Hauptdiagonalelemente zu erhalten.

Dann fehlt nur noch die Adjunkte.

Frage:

1. Wie sieht diese "Adjunkten"- Formel für eine 4X4 Matrix aus ?

Ich freue mich über jede Antwort.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse einer 4x4- Matrix: Tipp
Status: (Antwort) fertig Status 
Datum: 22:46 So 22.04.2007
Autor: madde_dong

Hallo hana_schwiem,

du hast dir wohl nur das Beispiel angesehen... Oberhalb der Formel für 3x3 Matrizen steht die allgemeine Formel.
Wichtig ist der Satz: "Die Minoren [mm] M_{ji} [/mm] sind die Werte der Unterdeterminanten der transponierten Matrix A, die durch Streichen der j-ten Zeile und der i-ten Spalte entstehen." Genau das musst du machen. Also musst du für jeden Eintrag eine Determinante berechnen.

Hoffe, das war verständlich!

Bezug
                
Bezug
Inverse einer 4x4- Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Mo 23.04.2007
Autor: hana_schwiem

Danke schonmal für den ersten kurzen Tip. Nach einiger Zeit scharfen Hinsehens hab ich nun begriffen wie sich die einzelnen Unterdeterminanten zusammensetzen - allerdings weiss ich nicht, wo die Minusse herkommen, die man in der 3x3- Formel sieht (jede zweite Unterdeterminante wird mit einem Minus versehen).

Nach welcher Regel werden also die Minusse vergeben?

Bezug
                        
Bezug
Inverse einer 4x4- Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mo 23.04.2007
Autor: dena

Hallo!

Du brauchst nur die folgende Formel ansehen:

[mm] a_{j,i} [/mm] = [mm] (-1)^{j+i} [/mm] * [mm] M_{j,i} [/mm]

Wobei j die j-te Zeile und i die i-te Spalte angibt.

Bist du z.B. in der 2. Zeile, 2. Spalte, dann rechnest du [mm] (-1)^4 [/mm] = +1

lg dena

Bezug
                                
Bezug
Inverse einer 4x4- Matrix: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mo 23.04.2007
Autor: hana_schwiem

Danke!

Ich habs jetzt hinbekommen (meine Güte, das war eine Arbeit, die ganzen Unterdeterminanten zu bilden).

Eine kurze Probe liefert auch die gewünschte Einheitsmatrix.

(^-^)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de