www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Inverses eines Körper
Inverses eines Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverses eines Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 07.11.2006
Autor: blascowitz

Aufgabe
Zeigen sie das [mm] K=(a+b\wurzel{5} [/mm] |a,b [mm] \in \IQ) [/mm] bzgl der gewöhnlichen Addition  und Multiplikation ein Körper ist.

Also mein Problem an der Aufgabe ist, dass ich für die Multiplikation zweier elemente kein Inverses finden kann, welches für alle a's und b's definiert ist.

Es gilt ja:

[mm] (a_{1}+b_{1}\wurzel{5})*(x+y\wurzel{5})=1 [/mm]

Dann multipliziere ich das aus und stelle dann nach x und y um. Und da erhalte ich immer einen Bruch( [mm] x=\bruch{1}{a+\wurzel{5}b}- \wurzel{5}y, [/mm] der ja für a, b element Q nicht immer definiert ist. somit ist das dann ja kein Körper. Fasse ich nur falsch zusammen geht das noch anders?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverses eines Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Di 07.11.2006
Autor: leduart

Hallo blascowitz
> Zeigen sie das [mm]K=(a+b\wurzel{5}[/mm] |a,b [mm]\in \IQ)[/mm] bzgl der
> gewöhnlichen Addition  und Multiplikation ein Körper ist.
>  Also mein Problem an der Aufgabe ist, dass ich für die
> Multiplikation zweier elemente kein Inverses finden kann,
> welches für alle a's und b's definiert ist.
>  
> Es gilt ja:
>  
> [mm](a_{1}+b_{1}\wurzel{5})*(x+y\wurzel{5})=1[/mm]
>  
> Dann multipliziere ich das aus und stelle dann nach x und y
> um. Und da erhalte ich immer einen Bruch
> [mm]x=\bruch{1}{a+\wurzel{5}*b}- \wurzel{5}*y[/mm] der ja für a, b
> element Q nicht immer definiert ist. somit ist das dann ja
> kein Körper. Fasse ich nur falsch zusammen geht das noch
> anders?

Wenn du den Bruch mit  [mm] a-\wurzel{5}b [/mm]  erweiterst siehst du, ob er dazu gehört!  Wenn du gleich am Anfang [mm] (a+\wurzel{5}*b)*(a-\wurzel{5}*b) [/mm] bildest gehts auch noch schneller das Inverse zu finden.
Gruss leduart


Bezug
                
Bezug
Inverses eines Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Di 07.11.2006
Autor: blascowitz

Warum darf ich den am Anfang gleich mit [mm] a-\wurzel{5}b [/mm] multiplizieren. dann kommt ja [mm] a^2 [/mm] + 5b raus und dass ist dann ja definiert. ist das dann das INverse zu der Aussage

Bezug
                        
Bezug
Inverses eines Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Di 07.11.2006
Autor: leduart

Hallo
> Warum darf ich den am Anfang gleich mit [mm]a-\wurzel{5}b[/mm]
> multiplizieren. dann kommt ja [mm]a^2[/mm] + 5b raus und dass ist
> dann ja definiert. ist das dann das INverse zu der Aussage

Nicht so , du musst ja ne 1 erzeugen! es kommt auch [mm] a^2+5b^2 [/mm] raus! und da du dazu ja das Inverse kennst, nämlich [mm] 1/(a^2+5b^2 [/mm] ) ist das Inverse dann insgesamt [mm] (a-b*\wurzel{5})/(a^2+5b^2 [/mm] )!
Ich find, das hättest du selbst sehen können!
Gruss [mm] leduarta^2+5b^2 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de