www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 08.11.2007
Autor: SusanneK

Aufgabe
Sei [mm] A=\pmat{ 1 & 0 & -1 \\ 4 & 1 & 6 \\ 1 & 0 & 2 }[/mm] , [mm] B=\pmat{ 2 & 3 & 1 \\ 4 & 2 & 0 \\ 2 & 2 & 0 }[/mm] , [mm] C=\pmat{ 2 & 1 & 1 \\ 1 & 3 & 2 \\ 0 & 0 & 1 }[/mm]

Jetzt muss ich zu 10 Behauptungen angeben, ob sie wahr oder falsch sind.
Z.B.
1)  Wenn [mm] A,B,C \in M_{33}(\IR) [/mm], so sind A,B,C invertierbar
2)  Wenn [mm] A,B,C \in M_{33}(\IR[T]) [/mm], so sind A,B,C invertierbar
3)  Wenn [mm] A,B,C \in M_{33}(\IZ/26\IZ) [/mm], so sind A,B,C invertierbar
4)  Wenn [mm] A,B,C \in M_{33}(\IZ/49\IZ) [/mm], so sind A,B,C invertierbar

Hallo, ich habe folgenden Ansatz:
1) Ist wahr, ich kann alle 3 Matrizen in die Einheitsmatrix überführen und damit die inverse Matrix erzeugen.
2) Hier verstehe ich den Unterschied zu 1 nicht. Für die Invertierbarkeit macht es doch nichts aus, ob ich das in einem Polynomring mache - oder ?
3) + 4) Hier hätte ich bei beiden gedacht, dass sie falsch sind, aber bei der Überprüfung mit einem Matrizenrechner kam bei 4) invertierbar heraus.
Ich dachte, wenn ich eine Matrix nicht in die Einheitsmatrix überführen kann, ist sie nicht invertierbar - und hier liegt ja [mm] \IZ [/mm] zugrunde, und deshalb kann ich nicht mit Brüchen arbeiten.

Wo ist mein Denkfehler ?

Danke, Susanne.

        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Sa 10.11.2007
Autor: Sparqie

Du hast Recht, dass man in [mm] \IZ [/mm] nicht mit Brüchen arbeiten kann, aber wir befinden uns hier in [mm] \IZ/n\IZ [/mm] . Das heisst, dass wir modulo rechnen, so ist zum Beispiel in [mm] \IZ/26\IZ [/mm] 13+14=1. Wenn du das beachtest, sollte es möglich sein, die Matrizen in die Einheitsmatrix zu überführen.  

Bezug
                
Bezug
Invertierbarkeit von Matrizen: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Sa 10.11.2007
Autor: SusanneK

Habs jetzt kapiert - Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de