www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Irreduzibele Elemente im Ring
Irreduzibele Elemente im Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibele Elemente im Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:31 So 14.12.2008
Autor: BieneJulia

Aufgabe
Betrachte den Ring R:= [mm] \IZ [\wurzel{-3}] [/mm] := [mm] \IZ [/mm] + [mm] \wurzel{-3}\IZ \subseteq \IC. [/mm]
Zeige, dass die Elemente 1+ [mm] \wurzel{-3}, [/mm] 1- [mm] \wurzel{-3} [/mm] und 2 in R irreduzibel sind.


So, ich weiß zwar dass irreduzibel heißt: Wenn z.B. 2 = xy mit x,y aus R , dann ist x oder y aus der Einheitengruppe, sprich eben x oder y Teiler von 1 ( es ex. ein a aus R mit ax (bzw. ay) = 1).
So weit,so gut...

Es muss doch jetzt für jede Produktdarstellung (xy) z.B. der Zahl 2 gelten, dass  einer der Faktoren x oder y eine Einheit ist, also die 1 teilt (ist doch nen unitärer kommutativer Ring oder nicht?!)  Ich weiß irgendwie nicht so richtig, wie die Einheiten von dem Ring aussehen?!  Stehe da grad etwas auf dem Schlauch.
Könnt ihr mir viell. nen Tipp geben?

Lg und danke schonmal im Voraus!
Julia

        
Bezug
Irreduzibele Elemente im Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 14.12.2008
Autor: felixf

Hallo Julia

> Betrachte den Ring R:= [mm]\IZ [\wurzel{-3}][/mm] := [mm]\IZ[/mm] +
> [mm]\wurzel{-3}\IZ \subseteq \IC.[/mm]
>  Zeige, dass die Elemente 1+
> [mm]\wurzel{-3},[/mm] 1- [mm]\wurzel{-3}[/mm] und 2 in R irreduzibel sind.
>  
>
> So, ich weiß zwar dass irreduzibel heißt: Wenn z.B. 2 = xy
> mit x,y aus R , dann ist x oder y aus der Einheitengruppe,
> sprich eben x oder y Teiler von 1 ( es ex. ein a aus R mit
> ax (bzw. ay) = 1).
>  So weit,so gut...
>  
> Es muss doch jetzt für jede Produktdarstellung (xy) z.B.
> der Zahl 2 gelten, dass  einer der Faktoren x oder y eine
> Einheit ist, also die 1 teilt (ist doch nen unitärer
> kommutativer Ring oder nicht?!)

Nun, es ist ein unitaerer kommutativer Ring, aber daraus folgt nicht, dass 2 irreduzibel ist. In [mm] $\IZ[\sqrt{-1}]$ [/mm] ist etwa $2 = (1 + [mm] \sqrt{-1}) [/mm] (1 - [mm] \sqrt{-1})$ [/mm] eine Zerlegung in zwei Nicht-Einheiten.

>  Ich weiß irgendwie nicht
> so richtig, wie die Einheiten von dem Ring aussehen?!  

In diesem Ring sind es [mm] $\pm [/mm] 1$, aber das muss man erstmal zeigen :)

> Stehe da grad etwas auf dem Schlauch.
>  Könnt ihr mir viell. nen Tipp geben?

Ein allgemeiner Tipp bei solchen Ringen:

betrachte die Funktion $N : R [mm] \to \IN$, [/mm] $N(a + b [mm] \sqrt{-3}) [/mm] = [mm] a^2 [/mm] + 3 [mm] b^2 [/mm] = (a + b [mm] \sqrt{3}) [/mm] (a - b [mm] \sqrt{3})$. [/mm]

Diese Funktion ist multiplikativ, also es gilt $N(x y) = N(x) N(y)$ fuer alle $x, y [mm] \in [/mm] R$, und es gilt $N(x) = 0$ genau dann, wenn $x = 0$ ist.

Ueberleg dir erstmal, fuer welche $x [mm] \in [/mm] R$ denn $N(x) = 1$ gilt. Du wirst schnell sehen, dies gilt nur fuer $x = [mm] \pm [/mm] 1$.

Wenn jetzt $2 = x y$ ist, dann ist $4 = N(2) = N(x) N(y)$. Entweder ist also $N(x)= 1$ oder $N(y) = 1$, womit $x$ oder $y$ eine Einheit ist, oder es gilt $N(x) = 2 = N(y)$. Aber gibt es Elemente $x [mm] \in [/mm] R$ mit $N(x) = 2$?

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de