www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Irreduzibilität
Irreduzibilität < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität: Einheitswurzeln
Status: (Frage) beantwortet Status 
Datum: 13:28 Di 12.02.2008
Autor: TTaylor

Aufgabe
Seien [mm]µ_{25}=e^{2\pi i/25} [/mm]die 25.Einheitswurzel in C und
f:= [mm]x^7 + 6x^4 -9x+21 \in \IQ[X][/mm].
Zeige :
a) Das Polynom f ist irreduzibel in [mm]\IQ[X][/mm].
b) Das Polynom f ist irreduzibel in [mm][mm] \IQ(µ_{25})[X]. [/mm] (Hinweis Gradsatz)

zu a)
f:= [mm]x^7 + 6x^4 -9x+21 \in \IQ[X][/mm].
nach Eisenstein: f ist primitiv(also ggT(1,6,9,21)=1)
grad von f>0 und es gibt ein p=3, so dass
p teilt nicht 1, p |6,9,21 und p²=9 teilt nicht 21.
-->nach Eisenstein f irreduzibel über [mm]\IZ[X] \Rightarrow \IQ[X][/mm].
f hat keine Nullstelle in Q nur in C.

zu b) hier weiß ich leider nicht was ich da machen soll?

        
Bezug
Irreduzibilität: Ansatz
Status: (Antwort) fertig Status 
Datum: 13:58 Di 12.02.2008
Autor: statler

Mahlzeit!

a) hast du ja perfekt gelöst [ok]

> b) Das Polynom f ist irreduzibel in [mm]\IQ(µ_{25})[X].[/mm] (Hinweis Gradsatz)

Bei b) ist doch ein Hinweis gegeben. Der Grad des Zerfällungskörpers von f muß jedenfalls ein Vielfaches von 7 sein. Kann 7 auch in [mm] [\IQ(µ_{25}):\IQ] [/mm] als Faktor auftauchen?

Damit müßte man dann einen Beweis zusammenbauen können.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Irreduzibilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 12.02.2008
Autor: TTaylor


> Bei b) ist doch ein Hinweis gegeben. Der Grad des
> Zerfällungskörpers von f muß jedenfalls ein Vielfaches von
> 7 sein. Kann 7 auch in [mm][\IQ(µ_{25}):\IQ][/mm] als Faktor
> auftauchen?

Der Gradsatz sagt, dass [mm](a_i : i\in I )[/mm]eine Basis in F:K und [mm] (b_j :j \in J) [/mm] eine Basis von L:K, so ist [mm](a_i b_j: (i,j)\in I\times J)[/mm] eine Basis von L:K.

Das Polynom f ist dann das Minimalpolynom deshalb hat dann [mm][\IQ(µ_{25}):\IQ][/mm] den Grad 7.
Wie komme ich dann darauf, dass f irreduzibel in [mm]\IQ(µ_{25}[X][/mm]? Ich verstehs einfach nicht.


Bezug
                        
Bezug
Irreduzibilität: weiteres dazu
Status: (Antwort) fertig Status 
Datum: 12:40 Do 14.02.2008
Autor: statler

Mahlzeit!

> > Bei b) ist doch ein Hinweis gegeben. Der Grad des
> > Zerfällungskörpers von f muß jedenfalls ein Vielfaches von
> > 7 sein. Kann 7 auch in [mm][\IQ(µ_{25}):\IQ][/mm] als Faktor
> > auftauchen?
>  
> Der Gradsatz sagt, dass [mm](a_i : i\in I )[/mm]eine Basis in F:K
> und [mm] (b_j :j \in J)[/mm] eine Basis von L:K, so ist [mm](a_i b_j: (i,j)\in I\times J)[/mm]
> eine Basis von L:K.

Der Gradsatz sagt, daß sich in einem Körperturm die Grade multiplizieren: Ist L [mm] \subset [/mm] K [mm] \subset [/mm] M, so ist [M:K][K:L] = [M:L].

> Das Polynom f ist dann das Minimalpolynom deshalb hat dann
> [mm][\IQ(µ_{25}):\IQ][/mm] den Grad 7.

[mm] [\IQ(µ_{25}):\IQ] [/mm] = 20 = [mm] \phi(25) [/mm]

> Wie komme ich dann darauf, dass f irreduzibel in
> [mm]\IQ(µ_{25}[X][/mm]? Ich verstehs einfach nicht.

Der Grad des Zerfällungskörpers von f über [mm] \IQ [/mm] ist jedenfalls durch 7 teilbar. Wenn f über [mm] \IQ(µ_{25}) [/mm] in h*g zerfällt, dann ist Grad des Zerfällungskörpers von f über [mm] \IQ(µ_{25}) [/mm] nicht durch 7 teilbar weil die Grade von h und g kleiner als 7 sind und 7 eine Primzahl ist, also ist der Grad dieses Körpers über [mm] \IQ [/mm] nicht durch 7 teilbar. Das ist ein Widerspruch.

Gruß
Dieter

Bezug
                                
Bezug
Irreduzibilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:39 So 17.02.2008
Autor: AkroVreni

Bitte, könnt ihr mir sagen wie man auf diese 7 kommt?

Bezug
                                        
Bezug
Irreduzibilität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 So 17.02.2008
Autor: statler

Guten  Tag Verena und [willkommenmr]

> Bitte, könnt ihr mir sagen wie man auf diese 7 kommt?

Diese 7 ist der Grad von f (s. Ursprungsfrage). Da f über [mm] \IQ [/mm] irreduzibel ist, hat jeder Oberkörper von [mm] \IQ, [/mm] in dem f einen Linearfaktor abspaltet, einen Grad über [mm] \IQ, [/mm] der durch 7 teilbar ist.

Gruß aus HH-Harburg
Dieter


Bezug
                                                
Bezug
Irreduzibilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 So 17.02.2008
Autor: AkroVreni

hi nochmal

Mri war die 20 nicht ganz klar, aber das ist wg dem Kreisteilungspolynom, gell, nach formel [mm] p^{n-2}*(p-1) [/mm] also 5*4

Bezug
                                                        
Bezug
Irreduzibilität: exactemang
Status: (Antwort) fertig Status 
Datum: 07:39 Mo 18.02.2008
Autor: statler

Guten Morgen Verena!

> Mir war die 20 nicht ganz klar, aber das ist wg. des
> Kreisteilungspolynoms, gell, nach der Formel [mm]p^{n-2}*(p-1)[/mm] also
> 5*4

So isset!

Ciao
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de