www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Isometrie
Isometrie < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:16 So 15.04.2007
Autor: mathedepp_No.1

Aufgabe
[Dateianhang nicht öffentlich]

Hallo liebe MAthe-Freaks,

mit dieser Aufgabe komme ich auf keinen grünen Zweig, weil ich noch nicht mal die Aufgabe verstehe:-( geschweige denn die dazugehörigen Aufgabenstellungen :-(

Wie ihr seht, großes Disaster!!!Könnt ihr mir helfen??

Wäre prima!!

Viele liebe GRüße, der mathedepp_No.1

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Isometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 So 15.04.2007
Autor: felixf

Hallo!

> [a][Bild Nr. 1 (fehlt/gelöscht)]
>  Hallo liebe MAthe-Freaks,
>
> mit dieser Aufgabe komme ich auf keinen grünen Zweig, weil
> ich noch nicht mal die Aufgabe verstehe:-( geschweige denn
> die dazugehörigen Aufgabenstellungen :-(

Sorry, das ist ein wenig zu allgemein. Du musst schon etwas konkreter sein: was verstehst du nicht? Verstehst du die Definition von isometrisch? Verstehst du, warum [mm] $b_0$, [/mm] $b_+$ und $b_-$ Bilinearformen sind?

Bei (a) musst du jeweils Vektoren [mm] $v_1, v_2$ [/mm] fuer jedes Paar $(i, j)$ finden (abhaengig von einem gegebenen [mm] $\varphi$, [/mm] welches du nicht kennst!) so, dass die Isometrie-Gleichung nicht gilt. Zum Beispiel $i = 0$, $j = +$: dann ist [mm] $b_0(v_1, v_2) [/mm] = 0$ fuer alle [mm] $v_1, v_2$. [/mm] Wann ist [mm] $b_+(\varphi(v_1), \varphi(v_2)) [/mm] = 0$? Was bedeutet das fuer [mm] $v_1, v_2$? [/mm]

Bei (b) denk mal drueber nach, wie man Bilinearformen ueber Matrizen darstellt. Was macht ein Isomorphismus [mm] $\varphi$ [/mm] mit so einer Matrix hier? (Ueberleg dir erstmal, wie so ein Isomorphismus [mm] $\varphi [/mm] : [mm] \IR \to \IR$ [/mm] ueberhaupt aussieht.)

LG Felix


Bezug
                
Bezug
Isometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mo 16.04.2007
Autor: mathedepp_No.1

hallo felix,

erstmal vielen dank für die Hilfe.
Jetzt habe ich die Aufgabenstellung erstmal durchschaut! :-)
Aber leider weiß ich noch nicht genau wie ich das zeigen kann, kannst du vielleicht dein Beispiel fortführen?? Komm noch nicht ganz dahinter wie ich vorzugehen habe.

Weiß ein Isomorphismus ist eine bijektive lineare Abbindung, in diesem fall hier ist ja dann [mm] \phi [/mm] sogar ein bijektiver Endomorphismus, dessen darstellungsmatrix quadratisch ist, oder?
desweiteren weß man aus der bijektivität das jedes element des definitionsbereichs genau einem element des Wetrebereichs zugeordnet wird...

Hilfst du mir??? Bitte!!

Viele Grüße, mathedepp_No.1

Bezug
                        
Bezug
Isometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 17.04.2007
Autor: mathedepp_No.1

halo zusammen,


hat niemand zeit mir heir zu helfen...bin hier total am verzweifeln...weil ich nicht damit klar komme!!1


Hoffe auf Hilfe, viele Grüße, der mathedepp_No.1

Bezug
                        
Bezug
Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 18.04.2007
Autor: schachuzipus


> Weiß ein Isomorphismus ist eine bijektive lineare
> Abbindung

Hallo md,

ja das ist der entscheidende Satz!!

Wie sieht denn eine [mm] \emph{lineare} [/mm] Abbildung von [mm] \IR\rightarrow\IR [/mm] aus?

Das ist doch immer eine Gerade durch den Ursprung, also eine Abbildung [mm] $\phi:\IR\rightarrow\IR:\phi(x)=\alpha\cdot{} [/mm] x$ mit [mm] $\alpha\in\IR$ [/mm]

Nimm mal an, es gäbe so eine Isometrie mit [mm] $b(v,w)=b(\phi(v),\phi(w))$ [/mm]

Dann kannst du mal die Eigenschaft von [mm] \phi [/mm] in [mm] $b(\phi(v),\phi(w))$ [/mm] einsetzen und dann die Bilinearität von $b$ ausnutzen.

Dann siehst du, worauf es hinaus läuft.

Kommste damit weiter?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de