www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Isomorph
Isomorph < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorph: ringe
Status: (Frage) beantwortet Status 
Datum: 15:54 So 06.11.2011
Autor: theresetom

Aufgabe
Sind [mm] \IZ_3 [/mm] und [mm] \IZ_4 [/mm] als Ringe isomorph?

Ich kann damit nix anfangen. Kann mir wer helfen?

Also...
Ich muss zweigen den Gruppenhomomorphismus
denn Ringhomomorphismus
und die bijektivität.


        
Bezug
Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 So 06.11.2011
Autor: felixf

Moin!

> Sind [mm]\IZ_3[/mm] und [mm]\IZ_4[/mm] als Ringe isomorph?
>  Ich kann damit nix anfangen. Kann mir wer helfen?

(Das wurde uebrigens schon hier (mit-)gefragt.)

> Also...
>  Ich muss zweigen den Gruppenhomomorphismus
>  denn Ringhomomorphismus
>  und die bijektivität.

Falls es einen Ringhomomorphismus zwischen diesen beiden Ringen gibt, so auch eine bijektive Abbildung. Und wenn es zwischen zwei endlichen Mengen eine bijektive Abbildung gibt, koennen diese dann unterschiedlich viele Elemente haben?

LG Felix


Bezug
                
Bezug
Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 So 06.11.2011
Autor: theresetom


> (Das wurde uebrigens schon hier  (mit-)gefragt.)

Aber nicht beantwortet

> Falls es einen Ringhomomorphismus zwischen diesen beiden Ringen gibt, so auch eine bijektive Abbildung. Und wenn es zwischen zwei endlichen Mengen eine bijektive Abbildung gibt, koennen diese dann unterschiedlich viele Elemente haben?

Nein sie können nicht bijektiv sein. also ist es kein Ringisomorphismus.

Aber wie zeige ich den Gruppenhomomorphismus und den Ringhomomorphismus, dass sie gelten bzw. nicht gelten??

Gruppenhomomorphismus heißt: Es ist egal ob man zuerst in [mm] \IZ_3 [/mm]  verknüpft und dann nach [mm] \IZ_4 [/mm]  abbildet oder zuerst nach [mm] \IZ_4 [/mm]  abbildet und dann dort verknüpft.
aber wie zeige ich das???
   φ(a + b) = φ(a) + φ(b)
Und bei Ringhomomorphsimus?
[mm] \varphi(a \cdot [/mm] b)= [mm] \varphi(a) \cdot \varphi(b). [/mm]



Bezug
                        
Bezug
Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 So 06.11.2011
Autor: felixf

Moin!

> > (Das wurde uebrigens schon hier  (mit-)gefragt.)
>
> Aber nicht beantwortet

Doch, es wurde beantwortet :-)

> > Falls es einen Ringhomomorphismus zwischen diesen beiden
> Ringen gibt, so auch eine bijektive Abbildung. Und wenn es
> zwischen zwei endlichen Mengen eine bijektive Abbildung
> gibt, koennen diese dann unterschiedlich viele Elemente
> haben?
>  
> Nein sie können nicht bijektiv sein. also ist es kein
> Ringisomorphismus.

Genau.

> Aber wie zeige ich den Gruppenhomomorphismus und den
> Ringhomomorphismus, dass sie gelten bzw. nicht gelten??

Wozu? Du weisst doch schon, dass es keinen Gruppenisomorphismus gibt, und damit sind die Gruppen nicht isomorph. Damit bist du fertig.

LG Felix


Bezug
                                
Bezug
Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 06.11.2011
Autor: theresetom

ich möchte es aber trotzdem wissen...

> Aber wie zeige ich den Gruppenhomomorphismus und den
> Ringhomomorphismus, dass sie gelten bzw. nicht gelten??

> Gruppenhomomorphismus

Es ist egal ob man zuerst in $ [mm] \IZ_3 [/mm] $  verknüpft und dann nach $ [mm] \IZ_4 [/mm] $  abbildet oder zuerst nach $ [mm] \IZ_4 [/mm] $  abbildet und dann dort verknüpft.
   φ(a + b) = φ(a) + φ(b)

> Ringhomomorphsimus

$ [mm] \varphi(a \cdot [/mm] $ b)= $ [mm] \varphi(a) \cdot \varphi(b). [/mm] $

Wie zeigt man es aber?

Bezug
                                        
Bezug
Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 06.11.2011
Autor: Schadowmaster

Du willst also eine solche Abbildung [mm] $\phi$ [/mm] finden?
Überleg dir hierzu mal, was folgende Werte ergeben:
[mm] $\varphi(1+1+1)$, $\varphi(2+2+2)$ [/mm]

Wenn [mm] $\varphi$ [/mm] additiv sein soll gibt es nur eine Abbildung, mit der das passt.
Mit dieser kannst du dann ggf. nachrechnen, ob die anderen Bedingungen (Multiplikativität, etc.) gelten.


lg



Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de