www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Isomorphismus zwischen Gruppen
Isomorphismus zwischen Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus zwischen Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 04.11.2009
Autor: Zottelchen

Aufgabe
Gesucht sind alle Isomorphismen zwischen den Gruppen [mm] (\IZ_{4},+_{4}) [/mm] und [mm] (\IZ\backslash{0}_{5},*_{5}) [/mm]

Hallo...
Ich sitze gerade am Lernen fürs Mathe-Examen und komme mit den Isomorphismen überhaupt nicht klar. Ich habe leider keinen Ansatz, wie ich diese Aufgabe lösen könnte, da mir auch noch nicht wirklich klar ist, was Isomorphsmen eigentlich sind. Okay, ich weiß, es sind strukturerhaltende, bijektive Abbildungen von der einen Menge in die andere, aber wie finde ich solche?

Wäre super, wenn ihr mir helfen könntet!

Liebe Grüße!
Katrin

        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 04.11.2009
Autor: angela.h.b.


> Gesucht sind alle Isomorphismen zwischen den Gruppen
> [mm](\IZ_{4},+_{4})[/mm] und [mm](\IZ\backslash{0}_{5},*_{5})[/mm]
>  Hallo...
>  Ich sitze gerade am Lernen fürs Mathe-Examen und komme
> mit den Isomorphismen überhaupt nicht klar. Ich habe
> leider keinen Ansatz, wie ich diese Aufgabe lösen könnte,
> da mir auch noch nicht wirklich klar ist, was Isomorphsmen
> eigentlich sind. Okay, ich weiß, es sind
> strukturerhaltende, bijektive Abbildungen von der einen
> Menge in die andere, aber wie finde ich solche?
>  
> Wäre super, wenn ihr mir helfen könntet!

Hallo,

ich gehe davon aus, daß Dir die Bedingungen für "Gruppenhomomorphismus" geläufig sind.

Immer gilt: das neutrale Element muß aufs neutrale abgebildet werden.

Hier hast Du zwei zyklische Gruppen der Ordnung 4.
Da man fürs Abbilden des neutralen Elementes keine Auswahl hat, bleiben noch drei Elemente.

Wenn Du jetzt berücksichtigst, daß erzeugende Elemente stets auf erzeugende abgebildet werden müssen,
merkst Du, daß sich die Anzahl der Möglichkeiten sehr reduziert.
Worauf kannst Du die 1 abbilden?

Was ergibt sich daraus.

Gruß v. Angela







Bezug
                
Bezug
Isomorphismus zwischen Gruppen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 04.11.2009
Autor: Zottelchen

Danke für deine Hilfe! Das neutrale Element in [mm] (\IZ_{4},+_{4}) [/mm] ist ja 0, in [mm] (\IZ*_{5},*_{4}) [/mm] ist das neutrale Element 1. Also gilt: f(0) = 1?
Das erzeugende Element ist in [mm] (\IZ_{4},+_{4}) [/mm] die 1, in [mm] (\IZ*_{5},*_{4}) [/mm] die 2. Also gilt: f(1) = 2?
Bleiben mir für die 2 und 3 noch folgende Möglichkeiten:
f(2) = 3
f(3) = 4

oder

f(2) = 4
f(3) = 3

Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen? Muss man die Bedingung [mm] f(g\*h) [/mm] = f (g) ° f(h) noch für alle Elemente und alle möglichen Kombinationen überprüfen?

Wäre super, wenn du meine Lösung nochmal anschauen könntet!
Dankeschön!

Bezug
                        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 04.11.2009
Autor: Arcesius

Hallo


>  Bleiben mir für die 2 und 3 noch folgende
> Möglichkeiten:
>  f(2) = 3
>  f(3) = 4
>  
> oder
>
> f(2) = 4
>  f(3) = 3
>  
> Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen?
> Muss man die Bedingung [mm]f(g\*h)[/mm] = f (g) ° f(h) noch für
> alle Elemente und alle möglichen Kombinationen
> überprüfen?

Es reicht wenn du zeigst, dass ein Element und sein Bild jeweils die selbe Ordnung haben, sonst kann es kein Isomorphismus sein :)
Also einfach noch das überprüfen und dazu schreiben!

>  
> Wäre super, wenn du meine Lösung nochmal anschauen
> könntet!
>  Dankeschön!

Grüsse, Amaro

Bezug
                                
Bezug
Isomorphismus zwischen Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Mi 04.11.2009
Autor: Zottelchen

da stehe ich gerade völlig auf dem Schlauch... Ist die Ordnung einer Gruppe nicht die Anzahl der Elemente? dann hat ein einzelnes Element doch die Ordnung 1?
Ich glaube, ich habe da etwas missverstanden....

Bezug
                                        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 04.11.2009
Autor: Arcesius

Hallo

> da stehe ich gerade völlig auf dem Schlauch... Ist die
> Ordnung einer Gruppe nicht die Anzahl der Elemente? dann
> hat ein einzelnes Element doch die Ordnung 1?
> Ich glaube, ich habe da etwas missverstanden....

Allerdings :)

Das einzige Element von Ordnung 1 ist das neutrale Element. Die Ordnung eines Elements ist die Ordnung der von ihm aufgespannten Untergruppe, also gesucht ist:

Das kleinste s [mm] \in \IN, [/mm] so dass [mm] g^{s} [/mm] = e für ein g [mm] \in [/mm] G (G Gruppe)


Aber Felix hat recht. Die Gleichheit der Ordnung ist ein notwendiges Kriterium, jedoch reicht es noch nicht ganz, nur das zu zeigen. Gezeicht werden muss es aber trotzdem :)

Grüsse, Amaro



Bezug
                                
Bezug
Isomorphismus zwischen Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Mi 04.11.2009
Autor: felixf

Hallo zusammen!

> > Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen?
> > Muss man die Bedingung [mm]f(g\*h)[/mm] = f (g) ° f(h) noch für
> > alle Elemente und alle möglichen Kombinationen
> > überprüfen?
>  
> Es reicht wenn du zeigst, dass ein Element und sein Bild
> jeweils die selbe Ordnung haben, sonst kann es kein
> Isomorphismus sein :)

Moment: wenn die Ordnungen nicht uebereinstimmen, kann es kein Isomorphismus sein. Aber nur weil die Ordnungen uebereinstimmen muss es noch lange nicht einer sein! Dann gibt es noch mehr zu ueberpruefen.

Da es sich hier um zyklische Gruppen handelt reicht es allerdings weniger zu testen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de