www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Isoquanten
Isoquanten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isoquanten: Frage
Status: (Frage) beantwortet Status 
Datum: 17:07 So 05.12.2004
Autor: DonMasai

Die Aufgabe: Zur Produktion einer festgelegten Menge eines Gutes können zwei Einsatzfaktoren x und y in folgenden Mengenkombinationen eingesetzt werden.
X [mm] \to [/mm]  4;  7; 9
Y [mm] \to [/mm] 29; 11; 9
Eine Einheit des Faktors x kostet 20 GE und eine Einheit des Faktors y kostet 30 GE.
Wie lautet die Gleichung der Isoquantenfunktion vom Typ [mm] y=\bruch{a}{x-b}+c? [/mm] Welches ist der entsprechende Funktionstermeiner unecht-gebrochenrationalen Funktion?

Als Lösung kommt raus: [mm] y=\bruch{24}{x-3}+5 [/mm]
Kann mir bitte jemand erklären wie man darauf kommt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Isoquanten: Vermutung
Status: (Antwort) fertig Status 
Datum: 18:49 So 05.12.2004
Autor: Fugre


> Die Aufgabe: Zur Produktion einer festgelegten Menge eines
> Gutes können zwei Einsatzfaktoren x und y in folgenden
> Mengenkombinationen eingesetzt werden.
> X [mm]\to[/mm]  4;  7; 9
>  Y [mm]\to[/mm] 29; 11; 9
>   Eine Einheit des Faktors x kostet 20 GE und eine Einheit
> des Faktors y kostet 30 GE.
>  Wie lautet die Gleichung der Isoquantenfunktion vom Typ
> [mm]y=\bruch{a}{x-b}+c?[/mm] Welches ist der entsprechende
> Funktionstermeiner unecht-gebrochenrationalen Funktion?
>  
> Als Lösung kommt raus: [mm]y=\bruch{24}{x-3}+5 [/mm]
>  Kann mir bitte jemand erklären wie man darauf kommt?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo Marcel,

ich habe selber leider keine Erfahrung mit diesem Aufgabentyp, allerdings habe ich eine Idee.
Du hast drei Zuordnungen $ [mm] \rightarrow [/mm] $ 3 Gleichungen und 3 Unbekannte in der Funktion,
sodass du mit einem einfachen Gleichungssystem auf deine Lösung kommen solltest.


[mm]f(x)=\bruch{a}{x-b}+c[/mm] ist allgemeine Formel
und für 3 Fälle kennst du die Lösungen
(1) $f(4)= [mm] \bruch{a}{4-b}+c=29$ [/mm]
(2) $f(7)= [mm] \bruch{a}{7-b}+c=11$ [/mm]
(3) $f(9)= [mm] \bruch{a}{9-b}+c=9$ [/mm]

Dies ist einer der Wege zum gesuchten Ergebnis.

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Bezug
                
Bezug
Isoquanten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:16 So 05.12.2004
Autor: DonMasai

Erstmal vielen Dank für die Hilfe, aber irgendwie komme ich da trotzdem nicht weiter. Das ich die Zahlen für x und f(x) einsetzen kann, hab ich mir schon gedacht, aber mir ist wieterhin unklar, wie ich auf das Ergebnis kommen soll.

Bezug
                        
Bezug
Isoquanten: Anleitung
Status: (Antwort) fertig Status 
Datum: 21:28 So 05.12.2004
Autor: Fugre


> Erstmal vielen Dank für die Hilfe, aber irgendwie komme ich
> da trotzdem nicht weiter. Das ich die Zahlen für x und f(x)
> einsetzen kann, hab ich mir schon gedacht, aber mir ist
> wieterhin unklar, wie ich auf das Ergebnis kommen soll.
>  

Hallo Marcel,

das Lösen des Gleichungssystem sollte eigentlich keine unüberb
rückbaren Probleme darstellen. Wenn das Problem allerdings doch hier liegt, so
kann ich dir gerade meine Lösungsstrategie vorstellen.

[mm]f(x)=\bruch{a}{x-b}+c[/mm] ist allgemeine Formel
und für 3 Fälle kennst du die Lösungen
(1) $f(4)= [mm] \bruch{a}{4-b}+c=29$ [/mm]
(2) $f(7)= [mm] \bruch{a}{7-b}+c=11$ [/mm]
(3) $f(9)= [mm] \bruch{a}{9-b}+c=9$ [/mm]

Nun habe ich (1) nach c umgeformt  
$ [mm] \rightarrow [/mm] c=29- [mm] \bruch{a}{4-b} [/mm] $
und in (2) eingesetzt
$ [mm] \rightarrow \bruch{a}{7-b}+29- \bruch{a}{4-b}=11$ [/mm]
jetzt kannst du (1) auch in (3) einsetzen
$ [mm] \rightarrow \bruch{a}{9-b}+29- \bruch{a}{4-b}=9$ [/mm]

Nun hast du 2 Gleichungen mit 2 Unbekannten.
2 Möglichkeiten sind dir nun offen, entweder löst du eine Gleichung zu einer Unbekannten auf und intergrierst
sie in die andere Gleichung, oder aber du löst beide Gleichungen zu einer Unbekannten hin auf und setzt sie
nun gleich.

Dann wir eine der Unbekannten bekannt und du kannst die "Bekannte" in eine Gleichung mit 2 Unbekannten stecken und
die nächste Unbekannte wird bekannt. Die so erhaltenen 2 Bekannten setzt du in eine Gleichung mit 3 Unbekannten und
schon sind alle einst Unbekannten bekannt, sodass du deine Funktion ermittelt hast.

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de