www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Ist die Folge konvergent?
Ist die Folge konvergent? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist die Folge konvergent?: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:37 Sa 23.07.2011
Autor: Hybris

Aufgabe
[mm] a_{n} [/mm] = [mm] \bruch{sin(n)}{\wurzel{3}} [/mm]

Hallo!
Ich bin an die Aufgabe folgend rangegangen:
1.
Ich habe bis n=4 die a ausgerechnet. Dabei sieht man, dass die Folge streng monoton, also [mm] a_{n} [/mm] < [mm] a_{n+1} [/mm] ist.

Des Weiteren habe ich mir die Beschränktheit angeschaut und folgendes festgestellt: 0 < [mm] a_{n} [/mm] < [mm] a_{n+1} [/mm]

Somit ist die Folge mon. steigend und nach oben nicht beschränkt. Da der erste Wert > 0 ist, kann die Folge, unter der Voraussetzung der ermittelten Beschränktheit, nicht konvergent sein.

Hier brauche ich, falls es nötig ist, eine Korrektur des Ganzen.

Danke bereits im Voraus.
Gruß

        
Bezug
Ist die Folge konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Sa 23.07.2011
Autor: notinX

Hallo,

> [mm]a_{n}[/mm] = [mm]\bruch{sin(n)}{\wurzel{3}}[/mm]
>  Hallo!
>  Ich bin an die Aufgabe folgend rangegangen:
>  1.
>  Ich habe bis n=4 die a ausgerechnet. Dabei sieht man, dass
> die Folge streng monoton, also [mm]a_{n}[/mm] < [mm]a_{n+1}[/mm] ist.

Überzeuge Dich vom Gegenteil:
[mm] $\sin(1)\approx0,017$ [/mm]
[mm] $\sin(180)=0$ [/mm]

>
> Des Weiteren habe ich mir die Beschränktheit angeschaut
> und folgendes festgestellt: 0 < [mm]a_{n}[/mm] < [mm]a_{n+1}[/mm]

Auch das lässt sich leicht wiederlegen.

[mm] $\sin(270)=-1$ [/mm]

>  
> Somit ist die Folge mon. steigend und nach oben nicht
> beschränkt. Da der erste Wert > 0 ist, kann die Folge,

Leider beides falsch. Versuche erstmal die richtigen Behauptungen aufzustellen und beweise diese dann.

> unter der Voraussetzung der ermittelten Beschränktheit,
> nicht konvergent sein.
>  
> Hier brauche ich, falls es nötig ist, eine Korrektur des
> Ganzen.
>  
> Danke bereits im Voraus.
>  Gruß

Gruß,

notinX

Bezug
                
Bezug
Ist die Folge konvergent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Sa 23.07.2011
Autor: Hybris

Danke für die saubere Antwort.....nun habe ich eine ganz Andere Sichtweise auf diese Folge :)

Aus der Sicht würde ich nun sagen, dass es nicht monoton sein kann. Zu der Beschränktheit brauche ich einen Tipp, falls es iwie ginge.
Gruß


Bezug
                        
Bezug
Ist die Folge konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 23.07.2011
Autor: notinX


> Danke für die saubere Antwort.....nun habe ich eine ganz
> Andere Sichtweise auf diese Folge :)
>  
> Aus der Sicht würde ich nun sagen, dass es nicht monoton
> sein kann. Zu der Beschränktheit brauche ich einen Tipp,
> falls es iwie ginge.
>  Gruß
>  

Ganz genau, sie ist nicht monoton.
Ich weiß nicht, wie ich da einen Tipp geben soll. Für die Sinusfunktion gilt per Definition: [mm] $-1\leq\sin x\leq 1\quad \forall x\in\mathbb{R}$. [/mm]

Gruß,

notinX

Bezug
                
Bezug
Ist die Folge konvergent?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Sa 23.07.2011
Autor: notinX

Ich habe jetzt erst gesehen, dass Du diese Frage gar nicht im Hochschulforum gestellt hast. Ich weiß nicht, ob und wie exakt ihr wirklich beweisen müsst. Aber unabhängig davon sind die Behauptungen falsch.
Tipp: Schau Dir mal an wie die Sinusfunktion aussieht.

Gruß,

notinX

Bezug
                        
Bezug
Ist die Folge konvergent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 23.07.2011
Autor: Hybris

danke, das hilft mir weiter.  die definition von ihrer seine mit -1 und 1 gilt aber für die Beschränktheit oder?

Bezug
                                
Bezug
Ist die Folge konvergent?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Sa 23.07.2011
Autor: notinX


> danke, das hilft mir weiter.  die definition von ihrer
> seine mit -1 und 1 gilt aber für die Beschränktheit oder?

Das verstehe ich nicht.

Bezug
                                        
Bezug
Ist die Folge konvergent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Sa 23.07.2011
Autor: Hybris

Verzeihung :)

Ich wollte wissen, ob es richtig ist wenn ich sage, dass die Folge auch nicht beschränkt ist, denn die sin(x) (danke für den Tipp) ja keine Grenzen hat.
Gruß


Bezug
                                                
Bezug
Ist die Folge konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 23.07.2011
Autor: notinX


> Verzeihung :)
>  
> Ich wollte wissen, ob es richtig ist wenn ich sage, dass
> die Folge auch nicht beschränkt ist, denn die sin(x)
> (danke für den Tipp) ja keine Grenzen hat.

Du meinst mit Grenzen wahrscheinlich Schranken. Wie ist denn 'Schranke' bzw. Beschränktheit definiert?
Das sollte Deine Frage beantworten.

>  Gruß
>  


Bezug
                                                        
Bezug
Ist die Folge konvergent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Sa 23.07.2011
Autor: Hybris

Die Beshränktheit ist folgend definiert:

a [mm] \le x_{n} \le [/mm] b oder a [mm] \ge x_{n} \ge [/mm] b

Trotz dem, fällt es mir schwer, hier die Beschränkheit anzugeben.

Bei einer Folge wie z.B. [mm] \bruch{1}{n} [/mm] mit n Element aus [mm] \IN [/mm]  außer die 0 kann man ruhig sagen, dass die Folge beschränkt ist. 1 [mm] \ge \bruch{1}{n} [/mm] > 0 ist.

Bei der Vorgegeben Folge fällt es mir aber sehr schwer, da ich nicht weiß, bzw. mir die Folge nicht ganz vorstellen kann, in welchen Abschnitten die bei welchen Werten sich bewegen wird.

Gruß

Bezug
                                                                
Bezug
Ist die Folge konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 23.07.2011
Autor: kamaleonti


> Die Beshränktheit ist folgend definiert:
>  
> a [mm]\le x_{n} \le[/mm] b oder a [mm]\ge x_{n} \ge[/mm] b
>  
> Trotz dem, fällt es mir schwer, hier die Beschränkheit
> anzugeben.
>  
> Bei einer Folge wie z.B. [mm]\bruch{1}{n}[/mm] mit n Element aus [mm]\IN[/mm]
>  außer die 0 kann man ruhig sagen, dass die Folge
> beschränkt ist. 1 [mm]\ge \bruch{1}{n}[/mm] > 0 ist.
>
> Bei der Vorgegeben Folge fällt es mir aber sehr schwer, da
> ich nicht weiß, bzw. mir die Folge nicht ganz vorstellen
> kann, in welchen Abschnitten die bei welchen Werten sich
> bewegen wird.

Hallo,

Schau dazu mal ullims Antwort an. Es ist [mm] \sin [/mm] beschränkt durch 1 und -1. Dann noch den konstanten Faktor einbeziehen.

LG

>  
> Gruß


Bezug
        
Bezug
Ist die Folge konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Sa 23.07.2011
Autor: ullim

Hi,

die Folge [mm] a_n=\bruch{sin(n)}{\wurzel{3}} [/mm] ist beschränkt da der Sinus beschränkt ist, durch +1 nach oben und durch -1 nach unten.

Die Grenzen der Folge [mm] a_n [/mm] sind [mm] \pm\bruch{1}{\wurzel{3}} [/mm]

Da die Sinusfunktion periodisch ist ist die Folge [mm] a_n [/mm] ossizilierend und somit auch nicht konvergent.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de