www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Ist diese Reihe konvergent?
Ist diese Reihe konvergent? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist diese Reihe konvergent?: Ist mein Beweis richtig?
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 10.12.2013
Autor: Boastii

Aufgabe
Es sei [mm] x>1 [/mm]. Ist die unendliche Reihe

[mm]S= \summe_{k=1}^{\infty } (-1)^k * (\wurzel[k]{x} -1) [/mm]

konvergent, absolut konvergent oder divergent?

Hallo ihr Lieben,

ich wollte anfangen in dem ich Behaupte die Reihe wäre konvergent und dass dann direkt beweise:

Durch Cauchy-Kriterium weiß man, dass wenn der Abstand zweier beliebiger ab einem Index kleiner als [mm] \varepsilon [/mm] ist. (Grob gesagt) Also:

[mm] \forall \varepsilon >0 \exists N\in \mathbbN \forall m>n\ge N : |a_m -a_n|<\varepsilon [/mm]

Dabei ist [mm] m=2n >n [/mm] eine Annahme o.B.d.A.. Ich folgere daraus:

[mm] |s_m - s_n| = | s_{2n} - sn |< \varepsilon [/mm]

Eingesetzt :

(*) [mm] |{(-1)^{n+1} * (\sqrt[n+1]{x} -1)+...+ (-1)^{2n} * (\sqrt[2n]{x}-1)}|<\varepsilon [/mm]

Nun habe ich mir folgende Abschätzung überlegt:

[mm] |{(-1)^{n+1} * (\sqrt[n+1]{x} -1)+...+ (-1)^{2n} * (\sqrt[2n]{x}-1)}|<|{n* (-1)^{2n} *(\sqrt[2n]{x} -1 )}|<\varepsilon [/mm]

Da [mm] x>1 [/mm] und [mm] 2n[/mm] gerade ist, ist der Term immer positiv und ich kann die Betragsstriche weglassen (bilde dabei auch den Grenzwert) :

[mm] \limes_{n\rightarrow\infty} (n*(-1)^{2n} * (\sqrt[2n]{x} -1) ) < \varepsilon[/mm]

Nun teile ich den obigen Grenzwerte gedanklich auf und erkenne das [mm] \limes_{n\rightarrow\infty} (-1)^{2n}=1 [/mm] ist. Und das [mm] \limes_{n\rightarrow\infty}(\sqrt[2n]{x} = 1 [/mm] Somit ergibt sich:

[mm] \limes_{n\rightarrow\infty} n*(1-1) = 0 [/mm]

Nun argumentiere ich:
Da [mm] |{n\cdot{} (-1)^{2n} \cdot{}(\sqrt[2n]{x} -1 )}| [/mm] die konvergente Majorante von (*) ist und den Grenzwert 0 hat und somit kleiner ist als jedes fest gewählte Epsilon. So muss auch (*) eine konvergente Reihe sein mit dem Grenzwert 0.
Hier greift das CAUCHY-Kriterium, denn (*) beschreibt gerade den Abstand zweier beliebiger Reihenglieder : [mm] |s_{2n} -s_n | [/mm].
Dadurch muss S konvergent sein. Was zu zeigen war.


Wäre das richtig? Habe ich einen gedanklichen Fehler gemacht?


MfG Boastii :)

        
Bezug
Ist diese Reihe konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 06:23 Mi 11.12.2013
Autor: fred97


> Es sei [mm]x>1 [/mm]. Ist die unendliche Reihe
>
> [mm]S= \summe_{k=1}^{\infty } (-1)^k * (\wurzel[k]{x} -1) [/mm]
>
> konvergent, absolut konvergent oder divergent?
>  Hallo ihr Lieben,
>  
> ich wollte anfangen in dem ich Behaupte die Reihe wäre
> konvergent und dass dann direkt beweise:
>  
> Durch Cauchy-Kriterium weiß man, dass wenn der Abstand
> zweier beliebiger ab einem Index kleiner als [mm]\varepsilon[/mm]
> ist. (Grob gesagt) Also:
>  
> [mm]\forall \varepsilon >0 \exists N\in \mathbbN \forall m>n\ge N : |a_m -a_n|<\varepsilon[/mm]
>  
> Dabei ist [mm]m=2n >n[/mm] eine Annahme o.B.d.A..



Nein, das kannst Du nicht machen !!!



> Ich folgere
> daraus:
>  
> [mm]|s_m - s_n| = | s_{2n} - sn |< \varepsilon[/mm]
>  
> Eingesetzt :
>  
> (*) [mm]|{(-1)^{n+1} * (\sqrt[n+1]{x} -1)+...+ (-1)^{2n} * (\sqrt[2n]{x}-1)}|<\varepsilon[/mm]
>  
> Nun habe ich mir folgende Abschätzung überlegt:
>  
> [mm]|{(-1)^{n+1} * (\sqrt[n+1]{x} -1)+...+ (-1)^{2n} * (\sqrt[2n]{x}-1)}|<|{n* (-1)^{2n} *(\sqrt[2n]{x} -1 )}|<\varepsilon[/mm]
>  
> Da [mm]x>1[/mm] und [mm]2n[/mm] gerade ist, ist der Term immer positiv und
> ich kann die Betragsstriche weglassen (bilde dabei auch den
> Grenzwert) :
>  
> [mm]\limes_{n\rightarrow\infty} (n*(-1)^{2n} * (\sqrt[2n]{x} -1) ) < \varepsilon[/mm]
>  
> Nun teile ich den obigen Grenzwerte gedanklich auf und
> erkenne das [mm]\limes_{n\rightarrow\infty} (-1)^{2n}=1[/mm] ist.
> Und das [mm]\limes_{n\rightarrow\infty}(\sqrt[2n]{x} = 1[/mm] Somit
> ergibt sich:
>  
> [mm]\limes_{n\rightarrow\infty} n*(1-1) = 0 [/mm]
>  
> Nun argumentiere ich:
>  Da [mm]|{n\cdot{} (-1)^{2n} \cdot{}(\sqrt[2n]{x} -1 )}|[/mm] die
> konvergente Majorante von (*) ist und den Grenzwert 0 hat
> und somit kleiner ist als jedes fest gewählte Epsilon. So
> muss auch (*) eine konvergente Reihe sein mit dem Grenzwert
> 0.
> Hier greift das CAUCHY-Kriterium, denn (*) beschreibt
> gerade den Abstand zweier beliebiger Reihenglieder :
> [mm]|s_{2n} -s_n | [/mm].
> Dadurch muss S konvergent sein. Was zu zeigen war.
>  
>
> Wäre das richtig?

Nein


> Habe ich einen gedanklichen Fehler
> gemacht?

Siehe oben.



Tipp: Leibnizkriterium.

FRED

>
>
> MfG Boastii :)


Bezug
                
Bezug
Ist diese Reihe konvergent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Mo 16.12.2013
Autor: Boastii

Hallo, tut mir leid das ich jetzt erst antworte.

Danke aber für deine Antwort.

> Nein, das kannst Du nicht machen !!!

Wieso nicht? :)

> Tipp: Leibnizkriterium.

Alles klar ich versuchs:

[mm] \summe_{k=1}^{\infty} (-1)^k( \wurzel[k]{x} -1) = \summe_{k=1}^{\infty}(-1)^k a_k[/mm]

Diese Reihe ist konvergent wenn [mm] (a_k)_{k \in \mathbb N} [/mm] eine monotone fallende Nullfolge ist (Leibniz-Kriterium).

Zuerst prüfe ich, ob es sich um eine Nullfolge handelt:

[mm] \limes_{k\rightarrow\infty}( \wurzel[k]{x} -1) = -1 + \limes_{k\rightarrow\infty}( \wurzel[k]{x}) = -1+x^{\limes_{k\rightarrow\infty} \frac{1}{k}} = -1+x^{\frac{1}{\limes_{k\rightarrow\infty} k}}= -1+x^0 = 0[/mm]

Als nächstes ob die Folge monoton fallend ist:

[mm] ((\wurzel[k+1]{x} -1 )-(\wurzel[k]{x} -1 ))<0 [/mm]
[mm] \wurzel[k+1]{x} -\wurzel[k]{x} <0 [/mm]

hier weiß ich nicht weiter. Wie könnte ich hier  weitermachen? Meine Kommilitonen haben mir gesagt das die Reihe absolut konvergent ist. Wie komme ich darauf?

Gruß

Bezug
                        
Bezug
Ist diese Reihe konvergent?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 16.12.2013
Autor: Richie1401

Abend,

> Hallo, tut mir leid das ich jetzt erst antworte.
>
> Danke aber für deine Antwort.
> > Nein, das kannst Du nicht machen !!!
>  
> Wieso nicht? :)

Du setzt einfach m=2n, das darfst du nicht.

>  
> > Tipp: Leibnizkriterium.
>  
> Alles klar ich versuchs:
>
> [mm]\summe_{k=1}^{\infty} (-1)^k( \wurzel[k]{x} -1) = \summe_{k=1}^{\infty}(-1)^k a_k[/mm]
>  
> Diese Reihe ist konvergent wenn [mm](a_k)_{k \in \mathbb N}[/mm]
> eine monotone fallende Nullfolge ist (Leibniz-Kriterium).
>
> Zuerst prüfe ich, ob es sich um eine Nullfolge handelt:
>  
> [mm]\limes_{k\rightarrow\infty}( \wurzel[k]{x} -1) = -1 + \limes_{k\rightarrow\infty}( \wurzel[k]{x}) = -1+x^{\limes_{k\rightarrow\infty} \frac{1}{k}} = -1+x^{\frac{1}{\limes_{k\rightarrow\infty} k}}= -1+x^0 = 0[/mm]
>
> Als nächstes ob die Folge monoton fallend ist:
>  
> [mm]((\wurzel[k+1]{x} -1 )-(\wurzel[k]{x} -1 ))<0 [/mm]
>  
> [mm]\wurzel[k+1]{x} -\wurzel[k]{x} <0[/mm]

Stelle mal weiter um:
[mm] \wurzel[k+1]{x}<\wurzel[k]{x} [/mm]

[mm] \frac{\wurzel[k+1]{x}}{\wurzel[k]{x}}<1 [/mm]

Wende jetzt Potenzgesetze an. Beachte dann, dass x>1 vorausgesetzt war.

>  
> hier weiß ich nicht weiter. Wie könnte ich hier  
> weitermachen? Meine Kommilitonen haben mir gesagt das die
> Reihe absolut konvergent ist. Wie komme ich darauf?

Absolute Konvergenz ermittelst du indem du
[mm] \sum_k|a_k| [/mm] betrachtest. Damit fällt also das [mm] (-1)^k [/mm] weg.
Absolute Konvergenz ist stärker als die "normale".

>
> Gruß  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de