www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ist meine Vermutung richtig ?
Ist meine Vermutung richtig ? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist meine Vermutung richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Di 06.12.2005
Autor: philipp-100

Hallo,

die Aufgabenstellung lautet
Bestimme diejenige Ursprungsgrade , die den durch die 1Achse und durch
[mm] y=-x^2+6x [/mm] bestimmten Parabelabschnitt in zwei Teilflächen mit gleicher Fläche zerlegt.

Mein Ansatz

t=mx
[mm] y=-x^2+6x [/mm]
Nullstellen bestimmt :

0 und 6
und dann den Schnittpunkt beider Grafen .

0 und 6-m

dann habe ich das Integral von [mm] -x^2+6x [/mm] vo 0 bis 6 genommen und durch 2 geteilt =A/2 =18

und dann habe ich nochmal integriert:
und zwar habe ich

die Fläche von mx von 0 bis 6-m genommen plus die Fläche von [mm] -x^2+6x [/mm] von 6-m bis 6


jetzt habe ich aber :

[mm] m^3-30m^2+9m=18 [/mm] raus

das kann aber nicht sein :

Ist mein Lösungsweg richtig ??

        
Bezug
Ist meine Vermutung richtig ?: Ansatz stimmt soweit!
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 07.12.2005
Autor: Loddar

Guten Morgen Philipp!


> t=mx
> [mm]y=-x^2+6x[/mm]
> Nullstellen bestimmt : 0 und 6

[ok]


> und dann den Schnittpunkt beider Grafen . 0 und 6-m

[ok]


> dann habe ich das Integral von [mm]-x^2+6x[/mm] vo 0 bis 6 genommen
> und durch 2 geteilt =A/2 =18

[ok]

  

> die Fläche von mx von 0 bis 6-m genommen plus die Fläche
> von [mm]-x^2+6x[/mm] von 6-m bis 6

[ok] Alternativ hättest Du auch nehmen können:

[mm] $A_{neu} [/mm] \ = \ [mm] \integral_{0}^{6-m}{-x^2+6x-m*x \ dx} [/mm] \ = \ 18$


> jetzt habe ich aber :
> [mm]m^3-30m^2+9m=18[/mm] raus

Hier musst Du Dich irgendwo verrechnet haben ... es muss ja irgendwo noch der Faktor [mm] $\bruch{1}{3}$ [/mm] vor dem [mm] $m^3$ [/mm] auftreten.


Leider finde ich auf den frühen Morgen auch nicht den Fehler (bzw. erhalte ein vernünftiges Ergebnis). [peinlich]


Gruß
Loddar


Bezug
        
Bezug
Ist meine Vermutung richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Mi 07.12.2005
Autor: taura

Hallo Phillipp!

Ich hab für Loddars Integral folgendes raus:

[mm] $\br{1}{6}m^3+3m^2-18m+36$ [/mm]

Hoffe, das stimmt...

Gruß taura

Bezug
                
Bezug
Ist meine Vermutung richtig ?: Danke, aber ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mi 07.12.2005
Autor: Loddar

Hallo taura!


Danke ... jetzt hatte ich das auch raus, zumindest fast ;-) ... !

Es muss allerdings heißen: [mm] $\red{-}\bruch{1}{6}m^3+3m^2-18m+36 [/mm] \ = \ 18$


Und umgeformt / faktorisiert ergibt das:  $... \ = \ [mm] \bruch{1}{6}*(6-m)^3 [/mm] \ = \ 18$


Damit sollte sich nun $m_$ ziemlich schnell ermitteln lassen.


Gruß
Loddar


Bezug
                        
Bezug
Ist meine Vermutung richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 Do 08.12.2005
Autor: philipp-100

Hey Loddar,

ich habe bei der Umformung [mm] (6-m)^3=18 [/mm] raus.
Gruß

Philipp

Bezug
                                
Bezug
Ist meine Vermutung richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Fr 09.12.2005
Autor: R4ph43l

Dann hast du das Integral falsch berechnet, überprüfe das nochmal:

[mm] {\integral_{0}^{6-m}{-x^2+6x-mx \ dx} = -\bruch{1}{3}x^3 + 3x^2 - \bruch{m}{2}x^2 \ |^{ 6-m }_{ 0 } = -\bruch{1}{6}m^3 + 3m^2 - 18m + 36 =} [/mm] ... die Umformung zur Form von Loddar sollte dann nicht weiter schwer sein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de