www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Iteration:Newton-Verfahren
Iteration:Newton-Verfahren < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Iteration:Newton-Verfahren: Kleine Aufgaben
Status: (Frage) für Interessierte Status 
Datum: 14:45 Sa 15.01.2005
Autor: vadimiron

Jetzt haben wir das Newton-Verfahren, und dazu kann ich einige kleine Aufgaben nicht loesen. Hilft mir bittteee!! :)

Aufgabenstellung:
Es sei 0,5 [mm] \le [/mm] b [mm] \le [/mm] 1. Die folgende Rechenvorschrift kann zur divisionsfeien Berechnung von  [mm] \bruch{1}{b} [/mm] benutzt werden:
[mm] x_{0}=1.5 [/mm] ,  [mm] x_{i+1}= x_{i}(2-bx_{i}) [/mm] , i=0,1,...

Teilaufgaben, die ich nicht loesen kann:
a)
Was hat diese Iterationsvorschrift mit dem Newton-Verfahren
[mm] x_{i+1}=x_{i}-\bruch{f(x_{i})}{f'(x_{i})} [/mm]
zu tun?

b)
Es sei [mm] \varepsilon_{i}:=x_{i}-\bruch{1}{b} [/mm] . Bestimme [mm] \varepsilon_{i+1} [/mm] als Funktion von [mm] \varepsilon_{i} [/mm] und b

c)
[mm] \bruch{1}{b} [/mm] soll auf 8 Dezimalstellen genau berechnet werden. Wieviel Iterationen sind maximal noetig?

d)
Tritt bei den Startwerten [mm] x_{0}=1 [/mm] bzw. [mm] x_{0}=2 [/mm] immer Konvergenz ein?


Danke im Voraus


        
Bezug
Iteration:Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Sa 15.01.2005
Autor: Clemens

Hallo!

Zu Teilaufgabe a):

Für den Kehrwert x von b gilt ja

[mm] \bruch{1}{x} - b = 0 [/mm]

Die Aufgabenstellung reduziert sich also auf das Nullstellenproblem der Funktion

[mm] f(x) := \bruch{1}{x} - b [/mm]

Wir berechnen also

[mm] f'(x) = -\bruch{1}{x^{2}} [/mm]

und dadurch die Iterationsfunktion

[mm] it(x) = x - \bruch{f(x)}{f'(x)} = x - \bruch{\bruch{1}{x} - b}{-\bruch{1}{x^{2}}} = x(2 - bx) [/mm]

und damit ist a) beantwortet.

Zu b)
Da du ja [mm]\varepsilon_{i+1}[/mm] in Abhängigkeit von [mm] x_{i+1} [/mm] und b angegeben kannst, und da [mm] x_{i+1} [/mm] von [mm] x_{i} [/mm] und b abhängt und [mm] x_{i} [/mm] wiederum von [mm]\varepsilon_{i}[/mm] und b, kannst du das lösen.

Zu c) und d)
Hoffentlich hilft dir dieser Anstoß. Ansonsten poste einfach deine bisherigen Ansätze zu c) und d)

Gruß Clemens

Bezug
        
Bezug
Iteration:Newton-Verfahren: Danke und weitere Fragen
Status: (Frage) für Interessierte Status 
Datum: 11:01 So 16.01.2005
Autor: vadimiron

1)
Danke fuer a), b) ist natuerlich sehr leicht, d) habe ich auch geschafft, aber mit c) habe ich noch Probleme. Wie berechne ich diese 8 Dezimalstellen?
Ich habe gedacht, wenn hier um "wieviel maximal noetig" gefragt wird, dann geht hier vielleicht um einen schlechtesten Fall, zum Beispiel um einen der Grenzwerten, 0,5 oder 1. Aber bin mir nicht sicher, ob es stimmt.

2)
Ich habe Frage noch zu einer Aufgabe, die so lautet:
Mit dem Startwert [mm] y^{(0)}=\pmat{0.40\\0.91} [/mm] erzeugt das Newton-Verfahren die Naeherungswerte
[mm] y^{(1)}=\pmat{0.40157562886530\\0.91584587742185} [/mm] ,
[mm] y^{(2)}=\pmat{0.40157174402980\\0.91582756823934} [/mm]
Wieviel Naeherungswerte muss man berechnen, um die Loesung bis auf Rechengenaugkeit eines PCs zu bestimmen? Begruenden Sie Ihre Antwort.

Ich habe folgende Idee: Rechengenaugkeit eines PCs kann man als k darstellen. k ist die maximale Anzahl Nachkommastellen, mit der PC arbeiten kann [mm] \Rightarrow [/mm] wir muessen nur feststellen wieviel richtige Stellen erscheint nach jedem Schritt:
wir sehen: 0.4015756 [mm] \to [/mm] 0.4015717 nach zwei Schritte gibts 5 richtige Schritte
und: 0.91584 [mm] \to [/mm] 0.915827 nach zwei Schritte - 4 richtige Schritte
[mm] \Rightarrow [/mm] 0.91..... konvegiert langsamer [mm] \Rightarrow [/mm] wir muessen 0.91... als Basis fuer Berechnung von der Rechengenaugkeit benutzen
4 richtige Stellen nach zwei Schritte [mm] \Rightarrow [/mm] 2 Stellen pro Schritt [mm] \Rightarrow [/mm] wir brauchen [mm] \bruch{k}{2} [/mm] Naeherungswerte (Schritte) zu berechnen

Was denkt ihr darueber??
Welche Ideen gibts hier noch??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de