www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - JNF bei nilpotenter Matrix
JNF bei nilpotenter Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

JNF bei nilpotenter Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 02.12.2008
Autor: hobes

Aufgabe
Sei [mm] \Psi [/mm] ein nilpotenter Endormorphismus des [mm] \IR^{15}. [/mm]
Es sei [mm] r_i=Rang(\Psi^i) [/mm] für [mm] i=1,2,\dots, [/mm] bekannt mit [mm] r_1=10, r_2=7, r_3=5, r_4=3, r_5=2, r_6=1, r_7=0. [/mm]
Berechne daraus die Jordansche Normalform von [mm] \Psi. [/mm]

Hallo zusammen,

wenn mir zu einer nilpotenten Matrix [mm] \Psi [/mm] der Rang von allen Potenzen [mm] \Psi^k [/mm] bekannt ist, wie bestimme ich dann die JNF?
Soweit ist mir klar: Einziger Eigenwerte ist [mm] \lambda [/mm] = 0, und Rang eines potenzierten Jordanblocks der Länge i ist: [mm] Rang(J_i^t)=\max\{0, i-t\}. [/mm]
Alle restlichen Überlegungen sind mir inzwischen nicht mehr sicher genug.

        
Bezug
JNF bei nilpotenter Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 02.12.2008
Autor: MathePower

Hallo hobes,

> Sei [mm]\Psi[/mm] ein nilpotenter Endormorphismus des [mm]\IR^{15}.[/mm]
>  Es sei [mm]r_i=Rang(\Psi^i)[/mm] für [mm]i=1,2,\dots,[/mm] bekannt mit
> [mm]r_1=10, r_2=7, r_3=5, r_4=3, r_5=2, r_6=1, r_7=0.[/mm]
>  Berechne
> daraus die Jordansche Normalform von [mm]\Psi.[/mm]
>  Hallo zusammen,
>  
> wenn mir zu einer nilpotenten Matrix [mm]\Psi[/mm] der Rang von
> allen Potenzen [mm]\Psi^k[/mm] bekannt ist, wie bestimme ich dann
> die JNF?
>  Soweit ist mir klar: Einziger Eigenwerte ist [mm]\lambda[/mm] = 0,
> und Rang eines potenzierten Jordanblocks der Länge i ist:
> [mm]Rang(J_i^t)=\max\{0, i-t\}.[/mm]


Für die Anzahl der elementaren Jordanblöcke der Größe k gilt:

[mm]N_{k}=r_{k+1}-2*r_{k}+r_{k-1}[/mm]


>  Alle restlichen Überlegungen
> sind mir inzwischen nicht mehr sicher genug.


Gruß
MathePower

Bezug
                
Bezug
JNF bei nilpotenter Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Di 02.12.2008
Autor: hobes

Schon mal vielen dank.
Gibt es dazu eine Quelle, wie kommt man darauf?

Bezug
                        
Bezug
JNF bei nilpotenter Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Di 02.12.2008
Autor: MathePower

Hallo hobes,

> Schon mal vielen dank.
>  Gibt es dazu eine Quelle, wie kommt man darauf?


Das habe ich aus einem Buch über Lineare Algebra entnommen:

Rolf Walter, Einführung in die lineare Algebra, Vieweg Verlag.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de