www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - JOR-Verfahren, Spektralradius
JOR-Verfahren, Spektralradius < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

JOR-Verfahren, Spektralradius: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:05 Mo 01.11.2010
Autor: steffenhst

Aufgabe
A(u) sei gegeben mit A(u) = [mm]\pmat{ 1 & u & -u\\ \-u & 1 & u\\ u & -u & 1}[/mm], u [mm]\in \IR[/mm].

Berechnen Sie den Spektralradius für die Iterationsmatrix des JOR-Verfahrens angewandt auf A(u). Für welche u > 0 konvergiert das JOR-Verfahren bei festem u.


Hallo an alle,

ich habe ein Problem bei dieser Aufgabe; vielleicht habt ihr einen Tipp. Doch zunächst: Die Iterationsmatrix des JOR-Verfahren ist gegeben durch (I ist dabei die Einheitsmatrix)

IT = (1-w)I + w*B,

dabei ist w der Relaxationsfaktor und B = [mm]D^{-1} (L + U)[/mm], wobei D, L, U der Diagnolanteil, L der echte untere Dreiecksmatrixanteil und U der echte obere Dreiecksmatrixanteil von A ist. Es gilt also: A = D - L - U =
[mm]\pmat{ 1 & u & -u\\ -u & 1 & u\\ u & -u & 1} = \pmat{ 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1} - \pmat{ 0 & 0 & 0\\ u & 0 & 0\\ -u & u & 0} - \pmat{ 0 & -u & u\\ 0 & 0 & -u\\ 0 & 0 & 0} [/mm].

Setzt man das ein, dann muss man, um den Spektralradius zu bestimmen, die Eigenwerte von IT bzw.

[mm]\pmat{ 1-w & -uw & uw\\ uw & 1-w & -uw\\ -uw & uw & 1-w} [/mm] bestimmen. Das habe ich gemacht und erhalte als charakteristisches Polynom zunächst: [mm](\lambda -(1-w))^3 + 3u^2w^2 (\lambda-(1-w))[/mm].
Und damit als ersten Eigenwert: [mm]\lambda_{1} = (\lambda - (1 - w))[/mm] und als zweiten und dritten Eigenwert [mm]\lambda_{2,3} = (1-w) \pm \wurzel{3} uw i[/mm]. (Ich hoffe, dass das stimmt).
Meine Frage ist jetzt erstmal ganz simpel: Der Spektralradius ist ja das Maximum der Beträge der Eigenwerte. Wie ist das aber hier, wo der zweite und dritte Eigenwert eine komplexe Zahl ist? Was vergleiche ich, um die Eigenwerte der Größe nach zu ordnen? Es schließt sich dann noch eine Frage an, aber das ist erstmal mein Hauptproblem.
Grüße, Steffen



        
Bezug
JOR-Verfahren, Spektralradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Mo 01.11.2010
Autor: steffenhst

Hat sich erledigt. Zu früh gefragt, sorry!


Bezug
                
Bezug
JOR-Verfahren, Spektralradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Mo 24.04.2017
Autor: tynia

Hallo, ich habe das gleiche Problem wie du. Kannst du mir sagen, wie du es gelöst hast? VG

Bezug
                        
Bezug
JOR-Verfahren, Spektralradius: Antwort
Status: (Antwort) fertig Status 
Datum: 07:25 Di 25.04.2017
Autor: fred97

Sind $ [mm] \lambda_1,...,\lambda_n$ [/mm] die (reellen oder komplexen) Eigenwerte einer  Matrix, so ist der Spektralradius

$= [mm] \max\{|\lambda_1|,...,|\lambda_n|\}$. [/mm]

Ist [mm] \lambda_j [/mm] komplex, so ist also $| [mm] \lambda_j|$ [/mm] der Betrag in [mm] \IC, [/mm] also falls

[mm] $\lambda_j=x_j+iy_i$ [/mm] mit [mm] $x_j,y_j \in \IR: [/mm]

$| [mm] \lambda_j|= \wurzel{x_j^2+y_j^2}$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de