www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Jacobideterminante bei Substitutionsformel
Jacobideterminante bei Substitutionsformel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobideterminante bei Substitutionsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:54 Fr 27.08.2004
Autor: Nadine83

Hallo,

ich habe diese Frage in keinem weiteren Forum gestellt ;-).
In der Maßtheorie gibt es ja die schöne Formel [mm] \mu (T(x)) = |\det T | \mu\ [/mm] (bzw.  [mm] d\mu (T(x)) = |\det T |d \mu\ [/mm] - kann man das so schreiben?)
Eine ähnliche Formel ist mir nun bei der Transformation von einem Koordinatensystem ins andere begegnet. Wenn [mm] T [/mm] beispielsweise die Abbildung von den kartesischen Koordinaten in sphärische Koordinaten (oder umgekehrt) ist, dann lautet die Substitutionsregel (bspw.) [mm] dxdy = |det DT| dr d\phi[/mm]
Die beiden Formeln müssen ja wohl etwas miteinander zu tun haben und sehen auch fast gleich aus.
Aber wieso hab ich bei der 'konkreten' Anwendung diese Ableitung D, die Jacobideterminante drinnen, wo kommt die her?
Danke!

        
Bezug
Jacobideterminante bei Substitutionsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:35 Fr 27.08.2004
Autor: Stefan

Liebe Nadine!

[willkommenmr]

> In der Maßtheorie gibt es ja die schöne Formel [mm][mm]\mu[/mm] (T(x)) = [mm]|\det[/mm] T >| [mm]\mu\ [/mm][/mm] (bzw.  [mm][mm]d\mu[/mm] (T(x)) = [mm]|\det[/mm] T |d [mm]\mu\ [/mm][/mm]
> - kann man das so schreiben?)[/mm][/mm]

Nein. Es gilt im Allgemeinen nur, wenn $f'$ eine messbare, bezüglich [mm] $T(\mu)$ [/mm] integrierbare Funktion ist:

[mm] $\int f'\, dT(\mu) [/mm] = [mm] \int [/mm] f' [mm] \circ [/mm] T [mm] d\mu$. [/mm]

Ist jetzt speziell [mm] $\mu$ [/mm] das Lebesgue-Maß und $T$ ein [mm] $C_1$-Diffeomeorphismus, [/mm] so gilt:

[mm] $\int [/mm] f' [mm] d\mu [/mm] = [mm] \int [/mm] (f' [mm] \circ [/mm] T) [mm] \cdot \vert \det [/mm] DT [mm] \vert\, d\mu$. [/mm]

Dies liegt einfach an dem Transformationsverhalten des Lebesgue-Maßes unter [mm] $C_1$-Diffeomorphismen: [/mm]

[mm] $T(\mu) [/mm] = [mm] \frac{1}{\vert \det DT\vert} \mu$. [/mm] (Das ist sehr aufwändig zu beweisen, steht aber in nahezu allen Analysis-II-Lehrbüchern.)

Ist $T$ speziell linear, so folgt:

[mm] $\int [/mm] f' [mm] d\mu [/mm] = [mm] \int [/mm] ( f' [mm] \circ [/mm] T) [mm] \cdot \vert \det [/mm] T [mm] \vert\, d\mu$. [/mm]

(Ich nehme mal an, das meintest du oben.)

Klar, denn das Differential einer linearen Abbildung ist die lineare Abbildung selbst (denk beim Differential eines Diffeomorphismus naiv immer an die bestapproximierende lineare Abbildung).

Lieben Grüße
Stefan





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de