www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Jacobson Radikal für Körper
Jacobson Radikal für Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobson Radikal für Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Fr 19.06.2009
Autor: hopsie

Aufgabe 1
Definition:
Sei A ein kommutativer Ring mit 1. Dann ist das Jacobson-Radikal J = $ [mm] \cap \{ M | M \subset A $ maximales Ideal $ \} [/mm] $

Aufgabe 2
Lemma
$ x [mm] \in [/mm] J [mm] \gdw [/mm] 1-xy [mm] \in A^{ \times } \forall [/mm] y [mm] \in [/mm] A $

Hallo zusammen,

ich habe da folgende Frage. Wenn jetzt A ein Körper, z.b. A = [mm] \IQ [/mm] ,ist, dann ist doch erstmal J = (0), weil das einzige maximale Ideal im Körper das Nullideal ist. Und es gilt doch (0) = [mm] \{0\}, [/mm] oder??
Aber, da im Körper jedes Element außer die Null eine Einheit ist:
[mm] \bruch{3}{4} [/mm] = 1 - [mm] \bruch{1}{2}*\bruch{1}{2} \in \IQ ^{\times} [/mm]
also [mm] \bruch{1}{2} \in [/mm] J=(0) ?? Oder gilt das eben gerade nicht, weil das für alle y gelten muss, also auch für y= [mm] \bruch{-1}{2} [/mm] ??
Aber dann würde das ja nie für Einheiten gelten, weil dann immer Null rauskommt und 0 ja keine Einheit ist. Ja, das macht auch irgendwie Sinn, weil ja ein maximales Ideal keine Einheit enthält...
Ist denn dann dieses Lemma für Körper recht "überflüssig", oder?

Auch wenn ich denke, dass ich mir meine Fragen selbst beantwortet habe, vielleicht stimmt ja was dran nicht.

Vielen Dank schonmal
LG, hospie



        
Bezug
Jacobson Radikal für Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Fr 19.06.2009
Autor: pelzig


> ich habe da folgende Frage. Wenn jetzt A ein Körper, z.b. A
> = [mm]\IQ[/mm] ,ist, dann ist doch erstmal J = (0), weil das einzige
> maximale Ideal im Körper das Nullideal ist.

Richtig.

> Und es gilt  doch (0) = [mm]\{0\},[/mm] oder??

Klaro. Das Nullideal ist ein Hauptideal

>  Aber, da im Körper jedes Element außer die Null eine
> Einheit ist:
>  [mm]\bruch{3}{4}[/mm] = 1 - [mm]\bruch{1}{2}*\bruch{1}{2} \in \IQ ^{\times}[/mm]
>  
> also [mm]\bruch{1}{2} \in[/mm] J=(0) ?? Oder gilt das eben gerade
> nicht, weil das für alle y gelten muss, also auch für y=
> [mm]\bruch{-1}{2}[/mm] ??

Es gilt eben aus diesem Grund nicht. Es muss für alle [mm] $y\in [/mm] A$ gelten [mm] $1-xy\in A^\times$, [/mm] und für jedes Element [mm] $x\ne0$ [/mm] aus einem Körper ist eben [mm] $1-xx^{-1}=0\not\in A^\times$, [/mm] also [mm] $x\in J(A)\gdw x\not\in A^\times$. [/mm]

>  Aber dann würde das ja nie für Einheiten gelten, weil dann
> immer Null rauskommt und 0 ja keine Einheit ist. Ja, das
> macht auch irgendwie Sinn, weil ja ein maximales Ideal
> keine Einheit enthält...

Genau.

> Ist denn dann dieses Lemma für Körper recht "überflüssig", oder?

Ringtheorie ist für Körper ohnehin meist trivial. Dennoch hast du doch immerhin rausbekommen, dass das Lemma für Körper gilt, ist ja schonmal ein Anfang :-)

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de