www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Jakobi-Matrix bestimmen
Jakobi-Matrix bestimmen < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jakobi-Matrix bestimmen: Frage zu einem Verfahren.
Status: (Frage) überfällig Status 
Datum: 22:01 So 05.12.2010
Autor: Drno

Aufgabe
Ich habe eine Implementierung eines Levenberg-Marquardt Algorithmus gefunden, der die folgende Form zur Berechnung der Jakobi-Matrix benutzt.


Die Jakobi-Matrix sieht wie folgt aus: J = [mm] \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} & \frac{\partial f_1}{\partial h_3} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} & \frac{\partial f_2}{\partial h_3}\\ \frac{\partial f_3}{\partial h_1} & \frac{\partial f_3}{\partial h_2} & \frac{\partial f_3}{\partial h_3} \end{bmatrix} [/mm]

Die Ableitungen würde ich z.B. wie folgt berechnen: [mm] \frac{\partial f_1}{\partial h_2} [/mm] =
[mm] \frac{f_1\left ( \mathbf{\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}+\begin{pmatrix}0\\ h_2\\ 0\end{pmatrix}}\right ) - f_1(\mathbf{x})}{h_2} [/mm]

Allerdings wird folgende Version im Algorithmus benutzt: [mm] \frac{\partial f_1}{\partial h_2} [/mm] =
[mm] \frac{f_1\left ( \mathbf{\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}+\begin{pmatrix}h_1\\ h_2\\ h_3\end{pmatrix}}\right ) - f_1(\mathbf{x})}{h_2} [/mm]

Was dann zu Folgendem führt: J = [mm] \begin{bmatrix} \frac{f_1(\mathbf{x+h}) - f_1(\mathbf{x})}{h_1} & \frac{f_1(\mathbf{x+h}) - f_1(\mathbf{x})}{h_2} & \frac{f_1(\mathbf{x+h}) - f_1(\mathbf{x})}{h_3}\\ \frac{f_2(\mathbf{x+h}) - f_2(\mathbf{x})}{h_1} & \frac{f_2(\mathbf{x+h}) - f_2(\mathbf{x})}{h_2} & \frac{f_2(\mathbf{x+h}) - f_2(\mathbf{x})}{h_3}\\ \frac{f_3(\mathbf{x+h}) - f_3(\mathbf{x})}{h_1} & \frac{f_3(\mathbf{x+h}) - f_3(\mathbf{x})}{h_2} & \frac{f_3(\mathbf{x+h}) - f_3(\mathbf{x})}{h_3} \end{bmatrix} [/mm]

Kennt jemand diese Art der Ableitung? Wenn das gut funktioniert spart man sich einiges an Arbeit, weil man nur 3 Differenzen anstelle von 9 bestimmen muss. Allerdings ist die ABleitung mMn nicht wikrlich korrekt (mathematisch gesehen).

Für Hilfe wäre ich wirklich dankbar.

Moritz

        
Bezug
Jakobi-Matrix bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Do 09.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de