Jordan-Form bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die Jordan-Form der Matrix [mm] A\in \IC^{3x3}:
[/mm]
[mm] A=\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1} [/mm] |
Kann mir jemand von euch sagen, ob das hier richtig ist?
Behauptung: Sei [mm] A=\pmat{ 1 & 1 & 1 \\ -1 & -1, & 1 \\ 1 & 1 & 1} \in \IC^{3x3}, [/mm] dann ist [mm] \pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 } [/mm] die Jordan Form der Matrix A.
Beweis: Zunächst bestimmen wir das charakteristische Polynom [mm] P_{A}(t). [/mm]
[mm] (A-t*I)=(\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1}-(t*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 })=(\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1}-\pmat{ t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t })=(\pmat{ 1-t & 1 & 1 \\ -1 & -1-t & -1 \\ 1 & 1 & 1-t }) [/mm] => [mm] P_{A}(t)=t^{2}-t^{3t} [/mm]
=> Nullstellen: [mm] x_{1}=0, x_{2}=0, x_{3}=1 [/mm]
=> für das Minimalpolynom [mm] (m_{A}(t)) [/mm] ergibt sich: [mm] m_{A}(t)=(t-0)^{k}*(t-1) [/mm] für [mm] 1\le [/mm] k [mm] \le [/mm] 2
=> Durch einsetzen der Matrix A für t ergiebt sich: [mm] m_{A}(A)=(A-0)^{1}*(A-1)=0 [/mm] und [mm] m_{A}(A)=(A-0)^{2}*(A-1)=0 [/mm] =>Das Minimalpolynom ist also [mm] m_{A}(t)=(t-0)^{1}*(t-1).
[/mm]
Hieraus ergeben sich folgende Möglichkeiten für die Jordan-Form:
(a) [mm] \pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 } [/mm] => [mm] m_{A}(t)=t^{2}*(t-1)
[/mm]
(b) [mm] \pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 } [/mm] => [mm] m_{A}(t)=t^{1}*(t-1)
[/mm]
(C) [mm] \pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 } [/mm] => [mm] m_{A}(t)=t^{2}*(t-1)
[/mm]
=> [mm] M_{A}(F)=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 }
[/mm]
Vielen Dank im Voraus!
DerPinguinagent
|
|
|
|
> Bestimmen Sie die Jordan-Form der Matrix [mm]A\in \IC^{3x3}:[/mm]
>
> [mm]A=\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1}[/mm]
>
> Kann mir jemand von euch sagen, ob das hier richtig ist?
>
> Behauptung: Sei [mm]A=\pmat{ 1 & 1 & 1 \\ -1 & -1, & 1 \\ 1 & 1 & 1} \in \IC^{3x3},[/mm]
> dann ist [mm]\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 }[/mm] die
> Jordan Form der Matrix A.
>
> Beweis: Zunächst bestimmen wir das charakteristische
> Polynom [mm]P_{A}(t).[/mm]
>
> [mm](A-t*I)=(\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1}-(t*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 })=(\pmat{ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1}-\pmat{ t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t })=(\pmat{ 1-t & 1 & 1 \\ -1 & -1-t & -1 \\ 1 & 1 & 1-t })[/mm]
> => [mm]P_{A}(t)=t^{2}-t^{3}[/mm]
[mm] =-t^2(t-1)
[/mm]
Hallo,
das charakteristische Polynom habe ich nicht nachgerechnet.
> => Nullstellen: [mm]x_{1}=0, x_{2}=0, x_{3}=1[/mm]
> => für das Minimalpolynom [mm](m_{A}(t))[/mm] ergibt sich:
> [mm]m_{A}(t)=(t-0)^{k}*(t-1)[/mm] für [mm]1\le[/mm] k [mm]\le[/mm] 2
Ja.
> => Durch einsetzen der Matrix A für t ergiebt sich:
> [mm]m_{A}(A)=(A-0)^{1}*(A-1)=0[/mm] und [mm]m_{A}(A)=(A-0)^{2}*(A-1)=0[/mm]
> =>Das Minimalpolynom ist also [mm]m_{A}(t)=(t-0)^{1}*(t-1).[/mm]
Ja.
>
> Hieraus ergeben sich es gibt folgende Möglichkeiten für die
> Jordan-Form:
>
> (a) [mm]\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \red{1} & 1 }[/mm] =>
> [mm]m_{A}(t)=t^{2}*(t-1)[/mm]
Die markierte 1 stimmt nicht. Da gehört eine 0 hin.
>
> (b) [mm]\pmat{ 0 & 0 & 0 \\ \red{1} & 0 & 0 \\ 0 & 0 & 1 }[/mm] =>
> [mm]m_{A}(t)=t^{1}*(t-1)[/mm]
Die markierte 1 stimmt nicht. Da gehört eine 0 hin.
>
> (C) [mm]\pmat{ 0 & 0 & 0 \\ \red{0} & 0 & 0 \\ 0 & 0 & 1 }[/mm] =>
> [mm]m_{A}(t)=t^{2}*(t-1)[/mm]
Die markierte 0 stimmt nicht, da gehört eine 1 hin.
Abgesehen davon: wie kommst Du eigentlich auf die verschiedenen Matrizen bei a) und c)?
>
> => [mm]M_{A}(F)=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 }[/mm]
Nein. Richtig wäre b)
Vielleicht ist es für Dich hilfreich, Dir mal das hier anzuschauen. Ich find's erhellend...
Für den ersten JNF-Bestimmungsversuch wird dort die Dimension der Eigenräume verwendet - also etwas anders, als Du es machst. Bequemer als mit dem Minimalpolynom in meinen Augen.
LG Angela
>
> Vielen Dank im Voraus!
>
> DerPinguinagent
|
|
|
|
|
Hallo Angela! Der Prof meinte in unserer Vorlesung, dass wir dieses Schema verwenden sollen, sonst gebe es für diese Übungsaufgaben 0 Punkte. Die Möglickeiten a-c habe ich mittels kombinatorik ermittelt. Auf der Diagonale stehen Eigenwerte der Matrix und für die 1 in der Diagonale gibt es nur diese 3 Möglichkeiten.
LG DerPinguinagent
|
|
|
|
|
Stimmt du hast recht! Es gibt hier nur zwei Möglichkeiten für die Jordan-Form. Einmal (a) und (b). Mein Fehler war, dass ich die komplette Diagonale betrachtet habe, also:
[mm] \pmat{0 & 0 & 0 \\ * & 0 & 0 \\ 0 & * & 1}
[/mm]
Durfte aber nur folgendes betrachten:
[mm] \pmat{0 & 0 & 0 \\ * & 0 & 0 \\ 0 & 0 & 1}
[/mm]
Deshalb kam ich auf 3 Möglichkeiten, und zwar 1,1 + 0,0 + 1,0 bzw. 0,1
|
|
|
|