www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordan-Normalform
Jordan-Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 17.06.2015
Autor: anil_prim

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo! Wir haben folgende Matrix:
[mm] \pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 } [/mm]
Das charakteristische Polynom ist [mm] X^4 [/mm] und das Minimalpolynom ebenfalls. Stimmt das soweit?
Nun sollen wir die Jordannormalform bestimmen. Wir sind auf die Matrix [mm] \pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 } [/mm] gekommen. Stimmt das?

Vielen Dank im Voraus schon mal,
Anil

        
Bezug
Jordan-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 17.06.2015
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo! Wir haben folgende Matrix:
>  [mm]\pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 }[/mm]
> Das charakteristische Polynom ist [mm]X^4[/mm] und das
> Minimalpolynom ebenfalls. Stimmt das soweit?
> Nun sollen wir die Jordannormalform bestimmen. Wir sind auf
> die Matrix [mm]\pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }[/mm]
> gekommen. Stimmt das?

Zeig Deine Rechnungen, dann sehen wir weiter.


FRED

>
> Vielen Dank im Voraus schon mal,
>  Anil


Bezug
                
Bezug
Jordan-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Mi 17.06.2015
Autor: anil_prim

Das charakteristische Polynom entsteht durch [mm] det(E-A)=x^4 [/mm]
Das Minimalpolynom muss ein Teiler des charakteristischen Polynoms sein, deshalb sind X, [mm] X^2, X^3 [/mm] oder [mm] X^4 [/mm] sein. Durch Einsetzen der Matrix in die möglichen Polynome wird das Polynom erst bei [mm] X^4=0. [/mm] Deshalb muss das Minimalpolynom [mm] X^4 [/mm] sein.
Der Grad des Minimalpolynoms ist somit 4. Die algebraische Vielfachheit des Eigenwerts 0 ist ebenfalls gleich 4. Da der Grad des Minimalpolynoms gleich 4 ist, ist auch das Jordankästchen 4. Auf der Diagonalen stehen die Eigenwerte, die in unserem Fall 0 sind. Auf der oberen Nebendiagonalen stehen 1en. Sonst nur Nullen.

Bezug
                        
Bezug
Jordan-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mi 17.06.2015
Autor: fred97


> Das charakteristische Polynom entsteht durch [mm]det(E-A)=x^4[/mm]
>  Das Minimalpolynom muss ein Teiler des charakteristischen
> Polynoms sein, deshalb sind X, [mm]X^2, X^3[/mm] oder [mm]X^4[/mm] sein.
> Durch Einsetzen der Matrix in die möglichen Polynome wird
> das Polynom erst bei [mm]X^4=0.[/mm] Deshalb muss das Minimalpolynom
> [mm]X^4[/mm] sein.
> Der Grad des Minimalpolynoms ist somit 4. Die algebraische
> Vielfachheit des Eigenwerts 0 ist ebenfalls gleich 4. Da
> der Grad des Minimalpolynoms gleich 4 ist, ist auch das
> Jordankästchen 4. Auf der Diagonalen stehen die
> Eigenwerte, die in unserem Fall 0 sind. Auf der oberen
> Nebendiagonalen stehen 1en. Sonst nur Nullen.

Passt
FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de