www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordan Basis
Jordan Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Basis: Bestimmen
Status: (Frage) beantwortet Status 
Datum: 11:30 Fr 22.01.2016
Autor: Skyrula

Aufgabe
Bestimme die Jordan-Normalform und die Basis von

[mm] A=\pmat{ 5 & 1 & 3 \\ 0 & 2 &0 \\ -6 & -1 & -4} \in [/mm] M^(3x3) [mm] \IR [/mm]

Hallo,

zuerst zur Jordan Normalform:

1: Charackteristisches Polynom bestimmen: [mm] -\lambda^3+3\lambda^2-4 [/mm]

2: Eigenwerte Bestimmen: [mm] \lambda_{1,2}=2, \lambda_3=-1 [/mm]

3: Algebraische Vielfachheit: 2=2, -1=1

4: Jordan-Normalform: [mm] \pmat{ 2 & 1 & 0 \\ 0 & 2 &0 \\ 0 & 0 & -1} [/mm]

Jetzt zur Jordan-Basis:

Ich habe das Internet jetzt eine Woche durchforstet und 100 Hilfen gefunden, die ich alle nicht wirklich verstehe. Kann jemand falls möglich mir das mit anderen Worten erklären oder eine Beispiel geben?

Ich danke euch!

        
Bezug
Jordan Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Fr 22.01.2016
Autor: fred97


> Bestimme die Jordan-Normalform und die Basis von
>  
> [mm]A=\pmat{ 5 & 1 & 3 \\ 0 & 2 &0 \\ -6 & -1 & -4} \in[/mm] M^(3x3)
> [mm]\IR[/mm]
>  Hallo,
>  
> zuerst zur Jordan Normalform:
>  
> 1: Charackteristisches Polynom bestimmen:
> [mm]-\lambda^3+3\lambda^2-4[/mm]
>  
> 2: Eigenwerte Bestimmen: [mm]\lambda_{1,2}=2, \lambda_3=-1[/mm]
>  
> 3: Algebraische Vielfachheit: 2=2, -1=1
>  
> 4: Jordan-Normalform: [mm]\pmat{ 2 & 1 & 0 \\ 0 & 2 &0 \\ 0 & 0 & -1}[/mm]
>  
> Jetzt zur Jordan-Basis:
>  
> Ich habe das Internet jetzt eine Woche durchforstet und 100
> Hilfen gefunden, die ich alle nicht wirklich verstehe. Kann
> jemand falls möglich mir das mit anderen Worten erklären
> oder eine Beispiel geben?

Schau da mal rein.

http://www.danielwinkler.de/la/jnfkochrezept.pdf


Kann ich nur empfehlen.

FRED

>
> Ich danke euch!


Bezug
                
Bezug
Jordan Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Fr 22.01.2016
Autor: Skyrula

Hallo,

danke für die Antwort. Ich habe diesen Link seit mehreren Tage rauf und runter studiert, jedoch stehe ich was die Basisberechnung angeht immer noch auf dem Schlauch. Für die Berechnung der Jordan-Normalform war dieser Link jedoch sehr hilfreich für mich.

Ich habe schon 100 möglichkeiten probiert, aber ich komme einfach nicht auf die Lösung die Wolfram-alpha mir anzeigt.

Ist es denn richtig das ich zwei Eigenvektoren habe [mm] \vektor{2 \\ 0 \\ 3} [/mm] und  [mm] \vektor{-9 \\ 0 \\ 12}? [/mm]




Bezug
                        
Bezug
Jordan Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Fr 22.01.2016
Autor: fred97


> Hallo,
>  
> danke für die Antwort. Ich habe diesen Link seit mehreren
> Tage rauf und runter studiert, jedoch stehe ich was die
> Basisberechnung angeht immer noch auf dem Schlauch. Für
> die Berechnung der Jordan-Normalform war dieser Link jedoch
> sehr hilfreich für mich.
>  
> Ich habe schon 100 möglichkeiten probiert, aber ich komme
> einfach nicht auf die Lösung die Wolfram-alpha mir
> anzeigt.
>
> Ist es denn richtig das ich zwei Eigenvektoren habe
> [mm]\vektor{2 \\ 0 \\ 3}[/mm] und  [mm]\vektor{-9 \\ 0 \\ 12}?[/mm]

Die stimmen beide nicht !

FRED

>
>
>  


Bezug
                                
Bezug
Jordan Basis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:07 Fr 22.01.2016
Autor: Skyrula

oh man, dass ist echt niederschmetternd...

ich muss auf [mm] S=\pmat{ -1 & -1 & 0 \\ 0 & 0 & -1 \\ 2 & 1 & 0 } [/mm] kommen.

würde sich jemand bereit erklären mir die erste Zeile vorzurechnen? Dann komme ichauf die anderen beiden zeilen hoffentlich.

Bezug
                                        
Bezug
Jordan Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Fr 22.01.2016
Autor: angela.h.b.

Hallo,

vielleicht zeigst Du uns mal, wie Du die Eigenvektoren berechnest.

Du suchst ja [mm] \vec{v} [/mm] mit

[mm] \pmat{ 5 & 1 & 3 \\ 0 & 2 &0 \\ -6 & -1 & -4}*\vec{v}=2\vec{v} [/mm]

<==>

[mm] \pmat{ 5-2 & 1 & 3 \\ 0 & 2-2 &0 \\ -6 & -1 & -4-2}*\vec{v}=\vec{0}, [/mm]

für den Eigenwert -1 entsprechend.

LG Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de