www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Jordan Messbarkeit
Jordan Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Messbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:00 Sa 09.07.2011
Autor: DerKoso

Aufgabe
In dieser Aufgabe wollen wir zeigen, dass die Menge
A :={(x, y, z) [mm] \in \IR^3 [/mm] : [mm] y^2 +z^2 \le [/mm] 1 und x [mm] \in [/mm] [-1, 1]} [mm] \subseteq \IR^3 [/mm]

Jordan-messbar ist und ihren Jordan-Inhalt [mm] \mu(A) [/mm] bestimmen. Dazu wollen wir die Verallgemeinerung von Satz 15.14 (defi. steht unten)
benutzen.

a) Was beschreibt die Menge A geometrisch

b)Geben Sie eine Jordan-messbare Menge B [mm] \subseteq \IR^2 [/mm] und Riemann-integrierbare Funktionen [mm] f_1, f_2 [/mm] : B [mm] \to \IR [/mm] mit
[mm] f_1(x, [/mm] y) [mm] \le f_2(x, [/mm] y) für alle (x, y) [mm] \in [/mm] B an, so dass

[mm] M(f_1, f_2) [/mm] := {f(x, y, z) [mm] \in \IR^3 [/mm] : (x, y) [mm] \in [/mm] B und [mm] f_1(x, [/mm] y) [mm] \le [/mm] z [mm] \le f_2(x, [/mm] y) } = A
gilt.

c)Folgern Sie aus (b), dass A Jordan-messbar ist.

hier die Definition von Satz 15.14

Satz 15.14 Sei B [mm] \subseteq \IR^n [/mm] Jordan-messbar, f : B [mm] \to \IR [/mm] Riemann-integrierbar und f [mm] \ge [/mm] 0. Dann ist M(f) [mm] \subseteq \IR^{n+1} [/mm] Jordan-messbar, und es gilt

[mm] \mu(M(f)) [/mm] = [mm] \integral_{B}^{} [/mm] f(x) dx

Hey brauch mal wieder eure hilfe ^^

hab schon ne weile rum probiert aber ich versteh einfach denn satz 15.14 nicht, habt ihr vielleicht ein beispiel oder eine andere Difinition wie man den satz besser verstehen könnte ?

zu denn Aufgaben

a) es ist ein Kreis oder ? mit radius 1
b) was meinen die mit [mm] f_1 f_2 [/mm] meinen
    die vielleicht denn rand der funktion?
c) ohne (b) kein c ^^
(aber glaub das die funktion jordan - messbar ist da es ein Geschlossens Intervall gibt und da die randfunktionen 0 sind)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Jordan Messbarkeit: Idee und Rückfrage
Status: (Frage) überfällig Status 
Datum: 11:40 Di 12.07.2011
Autor: DerKoso

Ich glaube jetzt bei a) das es kein kreis ist sondern ein Zylinder mit radius eins und höhe 2

zu b) [mm] f_1(x,y) [/mm] = [mm] -\wurzel{1-y^2} f_2(x,y) [/mm] = [mm] \wurzel{1-y^2} [/mm]

dann gilt  ja das hier [mm] -\wurzel{1-y^2} \le [/mm] z [mm] \le \wurzel{1-y^2} [/mm]

und hab mich noch weiter informiert

[mm] \mu(M(f_1,f_2)) [/mm] = [mm] \integral_{B}^{}{f_2(x,y)-f_2(x,y) d(x,y)} [/mm] = [mm] \integral_{B}^{}{\wurzel{1-y^2} + \wurzel{1-y^2} d(x,y)} [/mm] = 2 [mm] \integral_{B}^{}{\wurzel{1-y^2} d(x,y)} [/mm]

zu c) da das gilt muss ja laut satz 15.14 die Funktion jordan messbar sein oder ?


hab die frage noch hier gestelt
http://www.matheboard.de/thread.php?threadid=462498

Bezug
                
Bezug
Jordan Messbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 21.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Jordan Messbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 17.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de