www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordanform?
Jordanform? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordanform?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 So 14.03.2010
Autor: lauralikesmath

Aufgabe
A = [mm] \pmat{ 1 & 2 \\ 0 & 1 } [/mm]
EW von A: 1 (doppelt)

D = [mm] \pmat{ 1 & 1 \\ 0 & 1 } [/mm]

Es gilt

[mm] S^{-1}*A*S [/mm] = D

Wie sieht S aus?

Hallo!

Aus der Musterlösung weiß ich dass S = [mm] \pmat{ 1 & 0 \\ 0 & 1/2 } [/mm]
Aber wie komme ich darauf?  Wikipedia erzählt etwas von einem charakteristischen Polynom und Basistransformationen - aber die Musterlösung schreibt lediglich "Wähle die Koordinaten so dass A ein Jordanblock wird". Mehr nicht. Ich weiß nicht mal, was mit Koordinaten gemeint ist.

Gibt es also da einen Weg mit dem man das Problem in diesem Fall recht schnell lösen kann?

Der Weg bei Wikipedia ist mir leider nicht so ganz klar, weil auch sehr umfangreich.


Liebe Grüße
Laura


        
Bezug
Jordanform?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 14.03.2010
Autor: pelzig


> A = [mm]\pmat{ 1 & 2 \\ 0 & 1 }[/mm]
>  EW von A: 1 (doppelt)
>  
> D = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm]
>  
> Es gilt
>  
> [mm]S^{-1}*A*S[/mm] = D
>  
> Wie sieht S aus?
>  Hallo!
>  
> Aus der Musterlösung weiß ich dass S = [mm]\pmat{ 1 & 0 \\ 0 & 1/2 }[/mm]
>  
> Aber wie komme ich darauf?  Wikipedia erzählt etwas von
> einem charakteristischen Polynom und Basistransformationen
> - aber die Musterlösung schreibt lediglich "Wähle die
> Koordinaten so dass A ein Jordanblock wird". Mehr nicht.

Ja, die Musterlösung geht anscheinend davon aus, dass du das "Kochrezept zur Berechnung einer Jordanbasis" bereits kennst. Das ist genau das, was auf Wikipedia steht und nein, es gibt keinen einfachen Weg. Jordansche Normalform ist nunmal schwierig zu berechnen. Wenn ich dir irgendeine "Zufallsmatrix" hinkotzen würde, dann würdest du im Allgemeinen mit Papier und Bleistift ewig brauchen, selbst wenn du die Eigenwerte exakt kennst.

> Ich weiß nicht mal, was mit Koordinaten gemeint ist.

Mit "Wahl von Koordinaten" ist hier die Wahl einer Basis gemeint. In "den neuen Koordinaten" wird aus $A$ dann [mm] $S^{-1}A [/mm] S$. Diese ganze Sprechweise wird dir sehr viel klarer werden wenn du später mit Mannigfaltigkeiten rumhantierst.

Gruß, Robert

Bezug
        
Bezug
Jordanform?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mo 15.03.2010
Autor: angela.h.b.

Hallo,

> A = [mm]\pmat{ 1 & 2 \\ 0 & 1 }[/mm]
>  EW von A: 1 (doppelt)

Dann stellt man fest, daß dim Kern (A-E)=1 ist, und weiß aufgrund vorhergehender Studien:

die JNF ist

>  
> D = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm].

>  
> Es gilt
>  
> [mm]S^{-1}*A*S[/mm] = D
>  
> Wie sieht S aus?

Hierfür braucht man die Jordanbasis, also die Basis, bzgl. derer die Abbildungsmatrix D ist.

Schauen wir uns D an:

der erste Vektor der fraglichen Basis wird auf sich selbst abgebildet, ist also ein Eigenvektor [mm] \vec{v} [/mm] zum Eigenwert 1.
Er lautet?

Für den zweiten Basisvektor  [mm] \vec{b}:=\vektor{b_1\\b_2} [/mm] gilt:  

[mm] A*\vec{b}=\vec{v} [/mm] + [mm] \vec{b} [/mm]

<==> [mm] (A-E)\vec{b}=\vec{v}. [/mm]

Damit steht ein Plan für die Bestimmung einer Jordanbasis.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de