www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - K-te partielle Ableitung
K-te partielle Ableitung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

K-te partielle Ableitung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:56 Mo 16.01.2017
Autor: Joseph95

Aufgabe
Sei char(K) = 0. Für k [mm] \in [/mm] [n] definieren wir die k-te partielle Ableitung als K-lineare Abbildung
      [mm] \partial_k [/mm] : [mm] K[X_1, \ldots, X_n] \to K[X_1, \ldots, X_n] [/mm]
            [mm] X_1^{\alpha_1} \cdots X_n^{\alpha_n} \mapsto \alpha_k X_1^{\alpha_1} \cdots X_k^{\alpha_k-1} \cdots X_n^{\alpha_n} [/mm]

Da [mm] \partial_k [/mm] auf Basis von Momone definiert wurde, ist somit ein Homomorphismus von K-Vektorräumen definiert.

1) Zeige [mm] f,g\in K[X_1, \ldots, X_n] [/mm] die Leibnizregel [mm] \partial_k(fg) [/mm] = [mm] f\partial_k(g) [/mm] + [mm] \partial_k(f)g [/mm] .
2) Sei d > 0. Zeige, dass f [mm] \in K[X_1, \ldots, X_n] [/mm] genau dann homogen von Grad d ist, wenn die Eulersche Formel [mm] \summe_{k=1}^{n} X_k \partial_k(f)=df [/mm] erfüllt ist.

Hallo Leute,

ich habe Probleme dabei, die 2) Teilaufgabe zu lösen. Bei a) bin ich mir nicht ganz sicher, aber es sollte sich durch geschicktes Umformen lösen können, denke ich. Ich komme aber bei 2) nicht wirklich weiter? Kann mir da jemand helfen


Vg,
Joseph95

        
Bezug
K-te partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 16.01.2017
Autor: hippias

Versuche die Behauptung zuerst für den Fall zu beweisen, dass $f$ ein Monom ist.

Bezug
                
Bezug
K-te partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:06 Di 17.01.2017
Autor: Joseph95

Ich habe nun geschafft die Hinrichtung zu zeigen, sprich wenn f homogen ist, dann folgt daraus dass die Eulersche Formel gilt. Hat jemand vielleicht einen Tipp, wie ich vorgehen könnte, wenn ich zeigen will, dass für ein bestimmtes Polynom f, für welches die Eulersche Formel gilt, darauf schließen kann dass f homogen ist?


Mit freundlichen Grüßen,
Joseph95

Bezug
                        
Bezug
K-te partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 Di 17.01.2017
Autor: hippias

Schreib die Formel, am besten erst einmal wieder nur für ein Monom, aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de