www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - K^X Vektorraum
K^X Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

K^X Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 19.12.2017
Autor: gopro

Aufgabe
(a) Es seien X eine Menge und K ein Körper. Beweisen Sie, dass [mm] K^X [/mm] mit der Addition und Skalarmultiplikation ein K-Vektorraum ist.
(b) Wir betrachten den C-Vektorraum V = [mm] C^R. [/mm] Welche der folgenden Mengen ist Untervektorraum von V?
(i) A = {f ∈ V : f (1) = 0},
(ii) B = {f ∈ V : f (0) = 1},
(iii) C = {f ∈ V : ∃c > 0 ∀x ∈R: |f (x)|≤ c}.


Hey,

bei der a) muss man ja Assoziatität, Kommutativität, Nullelement und Inverse bezgl. + zeigen und bzgl. * muss gelten: mit a,b [mm] \in [/mm] K: (a+b)*x=ax+bx, a(x+y)= ax+ay, (ab)x=a(bx) und 1x=x.
Nun habe ich keinen Plan, wie ich das bei [mm] K^x [/mm] zeigen soll, es wäre nett wenn mir einer nur ein paar von den oben genannten Dingen beispielhaft zeigen würde, den Rest schaffe ich dann bestimmt selbst :).

bei der b) sind die Kriterien ja der Nullvektor und das x+y und ax mit x [mm] \in [/mm] K auch in den Untervektorräumen sind. Wie kann ich das jetzt in den komplexen Zahlen zeigen???

        
Bezug
K^X Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Di 19.12.2017
Autor: angela.h.b.


> (a) Es seien X eine Menge und K ein Körper. Beweisen Sie,
> dass [mm]K^X[/mm] mit der Addition und Skalarmultiplikation ein
> K-Vektorraum ist.

Hallo,

[mm] K^X [/mm] ist ja die Menge, welche Abbildungen von X nach K enthält.

Die Addition von Funktionen und Multiplikation von Funktionen mit Körperelementen wurden in der Vorlesung gewiß definiert:

Für [mm] f,g\in K^X [/mm] gilt:
[mm] f+g\in K^X [/mm] mit (f+g)(x):=f(x)+g(x) für alle [mm] x\in [/mm] X,
(k*f)(x)=k*f(x) für alle [mm] k\in [/mm] K, [mm] f\in K^X. [/mm]


Assoziativität:

zu zeigen ist: für [mm] f,g,\in K^X [/mm] gilt
(f+g)+h=f+(g+h).

Dafür mußt Du vorrechnen, daß für alle [mm] x\in [/mm] X gilt

((f+g)+h)(x)=(f+(g+h))(x).

Hierfür mußt Du die Definitionen verwenden, sowie die Rechengesetze im Körper K.

So: seien f,g,h [mm] \in [/mm] K, sei [mm] x\in [/mm] X.

Es ist

[mm] ((f+g)+h)(x)=(f+g)(x)+h(x)\qquad//qquad [/mm] Def. der Addition von Funktionen

=(f(x)+g(x))+h(x) [mm] \qquad//qquad [/mm] Def. der Addition von Funktionen

=f(x)+(g(x)+(x)) [mm] \qquad//qquad [/mm] Assziativgesetz in K

[mm] \vdots [/mm]


Die Kommutativität bekommst Du danach dann sicher auch hin.

Fürs neutrale Element überlege Dir, welche Funktion es tut, und rechne vor, daß sie es tut.

Wenn Du das hast, packst Du auch das inverse Element.

Leg einfach mal los jetzt, wenn es noch Probleme gibt, helfen wir weiter.

LG Angela












> (b) Wir betrachten den C-Vektorraum V = [mm]C^R.[/mm] Welche der
> folgenden Mengen ist Untervektorraum von V?
> (i) A = {f ∈ V : f (1) = 0},
> (ii) B = {f ∈ V : f (0) = 1},
> (iii) C = {f ∈ V : ∃c > 0 ∀x ∈R: |f (x)|≤ c}.
> Hey,

>

> bei der a) muss man ja Assoziatität, Kommutativität,
> Nullelement und Inverse bezgl. + zeigen und bzgl. * muss
> gelten: mit a,b [mm]\in[/mm] K: (a+b)*x=ax+bx, a(x+y)= ax+ay,
> (ab)x=a(bx) und 1x=x.
> Nun habe ich keinen Plan, wie ich das bei [mm]K^x[/mm] zeigen soll,
> es wäre nett wenn mir einer nur ein paar von den oben
> genannten Dingen beispielhaft zeigen würde, den Rest
> schaffe ich dann bestimmt selbst :).

>

> bei der b) sind die Kriterien ja der Nullvektor und das x+y
> und ax mit x [mm]\in[/mm] K auch in den Untervektorräumen sind. Wie
> kann ich das jetzt in den komplexen Zahlen zeigen?


Bezug
                
Bezug
K^X Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 Mi 20.12.2017
Autor: gopro

Vielen vielen Dank angela,

durch deine Hilfe habe ich die komplette a lösen können :-)).

Jetzt müsste mir nur noch jemand bei der b weiterhelfen.?

(b) Wir betrachten den C-Vektorraum V = [mm] C^R. [/mm] Welche der folgenden Mengen ist Untervektorraum von V?
(i) A = {f ∈ V : f (1) = 0},
(ii) B = {f ∈ V : f (0) = 1},
(iii) C = {f ∈ V : ∃c > 0 ∀x ∈R: |f (x)|≤ c}.

Bezug
                        
Bezug
K^X Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Mi 20.12.2017
Autor: fred97


> Vielen vielen Dank angela,
>  
> durch deine Hilfe habe ich die komplette a lösen können
> :-)).
>  
> Jetzt müsste mir nur noch jemand bei der b weiterhelfen.?
>  
> (b) Wir betrachten den C-Vektorraum V = [mm]C^R.[/mm]



>  Welche der
> folgenden Mengen ist Untervektorraum von V?
> (i) A = {f ∈ V : f (1) = 0},
> (ii) B = {f ∈ V : f (0) = 1},
> (iii) C = {f ∈ V : ∃c > 0 ∀x ∈R: |f (x)|≤ c}.  


Dann nehmen wir doch mal f,g [mm] \in [/mm] A und ein [mm] \alpha \in \IC [/mm] her.

Die Frage ist, ob dann auch [mm] \alpha [/mm] f und f+g in A liegen.

Prüfe nun Du, ob [mm] (\alpha [/mm] f)(1)=0 und (f+g)(1)=0 ist. Ist beides der Fall, so ist A ein  Untervektorraum von V, anderenfalls nicht.

zu B: enthält denn B denn Nullvektor aus V ?

zu C: nehmen wir uns doch mal f,g [mm] \in [/mm] C und ein [mm] \alpha \in \IC [/mm] her.

Gibt es dann [mm] $c_1,c_2 [/mm] >0$ mit

  |(f+g)(x)| [mm] \le c_1 [/mm] für all x [mm] \in \IR [/mm] und |( [mm] \alpha f)(x)|\le c_2 [/mm] für all x [mm] \in \IR [/mm] ?

Wenn ja, so ist C ein Untervektorraum von V, anderenfalls nicht.

Bezug
                                
Bezug
K^X Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Mi 20.12.2017
Autor: gopro

Ok,

dann müsste i) ja ein Untervektorraum sein, da das Nullelement existiert (da f(1)=0) und es gilt:
(a*f)(1)=a*f(1)=a*0=0 und
(g+f)(1)=g(1)+f(1)=0+0=0

ii) ist keine Unterraum da f(0)=1 nicht 0 wird und somit keine neutrales Element existiert!

iii)hier bin ich mir etwas unsicher, aber ich glaube, dass kein Unterraum existiert. Das Nullelement gibt es da f(0)=0<c gilt, aber
[mm] |(f+g)(x)|=|f(x)+g(x)|\le [/mm] |f(x)| + |g(x)| [mm] \le [/mm] c1 +c1 [mm] \not=c1 [/mm] ?

und |(a*f)(x)|=|(a*f(x)|= |a|*|f(x)| [mm] \le [/mm] |a|*c2 [mm] \not=c2 [/mm] ?

Bezug
                                        
Bezug
K^X Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Mi 20.12.2017
Autor: angela.h.b.

Hallo,

> dann müsste i) ja ein Untervektorraum sein, da das
> Nullelement existiert von V,

die Funktion [mm] n:\IR\to \IC [/mm] mit n(x):=0 für alle [mm] x\in \IR, [/mm]
in A ist

> (da f(1)=0) und es gilt:
> (a*f)(1)=a*f(1)=a*0=0 und
> (g+f)(1)=g(1)+f(1)=0+0=0

Genau.

>

> ii) ist keine Unterraum

da die Funktion [mm] n:\IR\to \IC [/mm] mit n(x):=0 für alle [mm] x\in \IR, [/mm]
in A ist, da n(0)=0.

> da f(0)=1 nicht 0 wird und somit
> keine neutrales Element existiert!


>

> iii)hier bin ich mir etwas unsicher, aber ich glaube, dass
> kein Unterraum existiert. Das Nullelement gibt es

von V,
die Funktion [mm] n:\IR\to \IC [/mm] mit n(x):=0 für alle [mm] x\in \IR, [/mm]
ist in C,

> da
> f(0)=0<c gilt,

Na, für c=0 oder c=-3 stimmt das aber nicht!

Es ist in C, weil für alle [mm] x\in \IR [/mm] z.B. gilt

n(x)=0<1234.




> aber

Seien [mm] f,g\in [/mm] C.

dann gibt es [mm] c_1,c_2 [/mm] > 0 mit [mm] |f(x)|

> [mm]|(f+g)(x)|=|f(x)+g(x)|\le[/mm] |f(x)| + |g(x)| [mm]\le[/mm] c1 +c1
> [mm]\not=c1[/mm] ?

Das macht doch nichts! Du hast ein [mm] c_3>0 [/mm] gefunden, nämlich [mm] c_3=c_1+c_2, [/mm] so daß (f+g)(x)< [mm] c_3 [/mm] für alle [mm] x\in \IR. [/mm]

> und |(a*f)(x)|=|(a*f(x)|= |a|*|f(x)| [mm]\le[/mm] [mm] |a|*c_2 [/mm]

Und hier hast Du ebenfalls eine obere Schranke gefunden.

LG Angela

Bezug
                                                
Bezug
K^X Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Mi 20.12.2017
Autor: gopro

Vielen Dank für eure Hilfe, ich hab es geschaft :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de