www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Känguru" - Känguru 2010
Känguru 2010 < Känguru < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Känguru 2010: Aufgabe 15 -geometrische Folge
Status: (Frage) beantwortet Status 
Datum: 12:50 Di 06.07.2010
Autor: ms2008de

Aufgabe
Die drei Zahlen [mm] \wurzel{7}, \wurzel[3]{7} [/mm] und [mm] \wurzel[6]{7} [/mm] sind unmittelbar aufeinanderfolgende Elemente einer geometrischen Folge.
Dann ist das nächste Element in dieser Folge ...

(a) [mm] \wurzel[9]{7} [/mm]
(b) [mm] \wurzel[12]{7} [/mm]
(c) [mm] \wurzel[5]{7} [/mm]
(d) [mm] \wurzel[10]{7} [/mm]
(e) 1 ?

Hallo,
Ich komme bei dieser Aufgabe leider nicht weiter. Laut Lösung soll (e) die richtige Antwort. Klar ist: [mm] \limes_{n\rightarrow\infty}\wurzel[n]{7} [/mm] = 1, dennoch ist mir unklar was das mit dieser geometrischen Folge zu tun haben könnte, bzw. wie die Folge weiterhin aussieht.
Vielen Dank für eure Hilfe im voraus.

Viele Grüße

        
Bezug
Känguru 2010: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Di 06.07.2010
Autor: schachuzipus

Hallo ms2008de,

> Die drei Zahlen [mm]\wurzel{7}, \wurzel[3]{7}[/mm] und [mm]\wurzel[6]{7}[/mm]
> sind unmittelbar aufeinanderfolgende Elemente einer
> geometrischen Folge.
>  Dann ist das nächste Element in dieser Folge ...
>  
> (a) [mm]\wurzel[9]{7}[/mm]
>  (b) [mm]\wurzel[12]{7}[/mm]
>  (c) [mm]\wurzel[5]{7}[/mm]
>  (d) [mm]\wurzel[10]{7}[/mm]
>  (e) 1 ?
>  Hallo,
>  Ich komme bei dieser Aufgabe leider nicht weiter. Laut
> Lösung soll (e) die richtige Antwort. Klar ist:
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{7}[/mm] = 1, dennoch ist
> mir unklar was das mit dieser geometrischen Folge zu tun
> haben könnte, bzw. wie die Folge weiterhin aussieht.
>  Vielen Dank für eure Hilfe im voraus.

Nun, es gilt doch [mm] $a_{n+1}=a_n\cdot{}q$ [/mm]

Du hast drei aufeinanderfolgende Glieder [mm] $a_k, a_{k+1}$ [/mm] und [mm] $a_{k+2}$ [/mm] gegeben.

Gesucht íst das $q$

Schreibe die Wurzeln als Potenzen um, dann hast du die Bestimmungsgleichungen:

[mm] $a_{k+2}=\sqrt[6]{7}=\red{7^{\frac{1}{6}}=7^{\frac{1}{3}}\cdot{}q}=a_{k+1}\cdot{}q$ [/mm]

Also [mm] $\red{q=...}$ [/mm]

Passt das auch mit den anderen beiden?

[mm] $a_{k+1}=7^{\frac{1}{3}}=7^{\frac{1}{2}}\cdot{}q$ [/mm] ...

Mit dem so ermittelten q kannst du das nächste Glied [mm] $a_{k+3}$ [/mm] berechnen als [mm] $a_{k+2}\cdot{}q$ [/mm]

Gruß

schachuzipus

>  
> Viele Grüße


Bezug
                
Bezug
Känguru 2010: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Di 06.07.2010
Autor: ms2008de

Vielen Dank, q wär dann einfach [mm] \bruch{1}{\wurzel[6]{7}}, [/mm] da stand ich ja aber mal komplett auf dem Schlauch

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de