www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Kanal (Integralrechnung)
Kanal (Integralrechnung) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kanal (Integralrechnung): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 21.02.2009
Autor: Elisabeth17

Aufgabe
Der Boden eines 2km lagen Kanals hat die Form eoner Parabel mit f(x)= [mm] \bruch{1}{8}x^{2}. [/mm] (Dazu Figur: Parabel von a= -4 bis b= 4; Einer Längeneinheit entspricht 1m in der Wirklichkeit).
a)  Berechnen Sie den Inhalt der Querschnittsfläche des Kanals.
b)  Wie vie Wasser befindet sich im Kanal, wenn er ganz gefüllt ist?
c)  Wie viel Prozent der max. Wassermenge befindet sich im Kanal, wenn er nur bis zur halben Höhe gefüllt ist?

Hallo MatheForum!

Ich habe Probleme mit der Teilaufgabe c) dieser Aufgabe (deren abgedruckte Skizze ich leider nicht darstellen kann. Ich hoffe es geht auh ohne.).

Also …
a) und b) habe ich laut Lösungblatt richtig:

a)
A= 16 - [mm] \integral_{-4}^{4}{\bruch{1}{8}x^{2} dx} [/mm] = [mm] \bruch{32}{3} m^{2} [/mm]

b)
V= [mm] \bruch{32}{3}*2000 \approx [/mm] 21333 [mm] m^{3} [/mm]

Bei c) verstehe ich aber den Lösungsschritt nicht:
Querschnittsfläche zur halben Höhe:
A*= [mm] 2\wurzel{8} [/mm] - [mm] \integral_{\wurzel{-8}}^{\wurzel{8}}{\bruch{1}{8}x^{2} dx} [/mm] = [mm] \bruch{8}{3}\wurzel{2} \approx [/mm] 3,771 [mm] m^{2} [/mm]

V*= [mm] \bruch{8}{3}\wurzel{2}*2000 \approx [/mm] 7543 [mm] m^{3} [/mm]

[Und damot etwa 35% der max. Wassernemnge]

Mein Problem: Wie kommt man auf diese [mm] 2\wurzel{8}? [/mm]
Wieso integriert man plötzlich von [mm] \wurzel{-8} [/mm] bis [mm] \wurzel{8} [/mm] ?

Da komm ich – leider – nicht mehr mit.

Ich würde mich freuen, wenn mir jemand diese Schritte (verständlich) erklären könnte!

Vielen Dank für die Hilfe.

LG Eli

        
Bezug
Kanal (Integralrechnung): Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 21.02.2009
Autor: Steffi21

Hallo, die Fläche vom Kanal, der in Aufgabe c) bis zu einer Höhe von 1m befüllt wir, entspricht der hellblauen Fläche, das Intgral, welches du berechnest, entspricht der dunkelblauen Fläche, die hellblaue und dunkelblaue Fläche bilden gemeinsam ein Rechteck, mit der Länge [mm] 2*\wurzel{8} [/mm] und der Breite 1, du ziehst also von der Rechteckfläche dein Integral ab,

[Dateianhang nicht öffentlich]

befüllst du den Kanal bis zur Höhe von 1m, so gilt [mm] 1=\bruch{1}{8}x^{2} [/mm] also [mm] x^{2}=8, [/mm] also [mm] x_1=-\wurzel{8} [/mm] und [mm] x_2=\wurzel{8} [/mm]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Kanal (Integralrechnung): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Sa 21.02.2009
Autor: Elisabeth17

Vielen, vielen Dank, Steffi, für deine Mühe!
Ich hab's verstanden!

:-)

LG Eli

Bezug
                        
Bezug
Kanal (Integralrechnung): Binomische Formel
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 21.02.2009
Autor: Elisabeth17

Jetzt habe ich noch eine Frage, die mit der obigen Aufgabe jedoch nichts mehr zu tun hat.

Höchstwahrscheinlich ist sie blöd. Ich komme gerade aber wirklich kein Stück weiter:

Ich frage mich nämlich, wie man [mm] (-x^{2} [/mm] + [mm] 3)^{2} [/mm] ausmultipliziert.

Es handelt sich ja um eine binomische Formel.
Nur weiß ich nicht, wie ich das Minus vor dem [mm] x^{2} [/mm] behandeln soll;
schließlich kann ich deshalb weder die Regel
[mm] (a+b)^{2} [/mm] = [mm] a^{2} [/mm] + 2ab + [mm] v^{2} [/mm]
noch die Regel
[mm] (a-b)^{2} [/mm] = [mm] a^{2} [/mm] - 2ab + [mm] b^{2} [/mm]   (*)
anwenden.

Meine Idee war nun, [mm] -x^{2} [/mm] + 3 mit (-1) zu multiplizieren, sodass sich die Vorzeichen umkehren.
Und so könnte ich mit [mm] (x^{2}-3)^{2} [/mm] daher Regel (*) anwenden
-->  [mm] x^{4}-6x^{2}+9 [/mm]

Das hätte ich dann wieder mit (-1) multipliziert, sodass "meine" Lösung
[mm] x^{2}-3)^{2} [/mm] = [mm] -x^{4}+6x^{2}-9 [/mm]
lauten würde.

Was falsch ist.

Kann mir jemand also sagen, wie ich [mm] (-x^{2} [/mm] + [mm] 3)^{2} [/mm] richtig "auflöse" und meiner Verwirrung ein Ende bereiten?

Bedanke mich schon im voraus dafür!

LG Eli

Bezug
                                
Bezug
Kanal (Integralrechnung): Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Sa 21.02.2009
Autor: Steffi21

Hallo,

du kannst doch Summanden vertauschen, rechne also [mm] (3-x^{2})^{2}, [/mm] gefällt es dir so besser, du kannst natürlich auch rechnen:
[mm] a=-x^{2} [/mm]
b=3

[mm] a^{2}=x^{4} [/mm] (minus mal minus gibt plus)
[mm] 2*a*b=-6x^{2} [/mm]
[mm] b^{2}=9 [/mm]

Steffi


Bezug
                                        
Bezug
Kanal (Integralrechnung): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 21.02.2009
Autor: Elisabeth17

Ach so geht das …
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de